首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein synthetic activities of membrane-bound and free hepatic ribosomes isolated from intact rats fed ad libitum, and normal rats subjected to food restriction to match that of hypophysectomised (Hx) rats were compared to the in vitro protein synthetic capacity of hepatic ribosomes isolated from Hx rats. Hypophysectomy resulted in decreased protein synthetic ability of bound ribosomes, whether protein synthesis was directed by endogenous messenger RNA (mRNA) (p less than 0.05) or by polyuridylic acid (polyU) (p less than 0.01). In contrast, the protein synthetic activity of free hepatic ribosomes from Hx rats was reduced when protein synthesis was directed by endogenous mRNA (p less than 0.05) but, when polyU was substituted as the messenger, the protein synthetic activity of these free ribosomes was equal to that of control rats. On the other hand the effects of food restriction on hepatic ribosomal function could be clearly differentiated from the effects observed following hypophysectomy. Thus, the reduced protein synthetic activity of hepatic bound ribosomes isolated from food restricted normal rats was not demonstrable, when polyU was used to direct protein synthesis. Further, food restriction had no effect on the protein synthetic activity of free hepatic ribosomes, and this was true when protein synthesis was directed by either endogenous or artificial messenger. It is concluded that hypophysectomy reduces the protein synthetic ability of both bound and free hepatic ribosomes, and this change of ribosomal function of Hx rats cannot be attributed to their decreased food intake.  相似文献   

2.
During the initial ten hours of growth in lymphocytes stimulated by phytohemagglutinin, the cells are converted from a state in which over 70% of all ribosomes are inactive free ribosomes, to one in which over 80% of ribosomes are in polysomes or in native ribosomal subunits. In this initial period, there was a neglible increase in total ribosomal RNA due to increased RNA synthesis, and abolition of ribosomal RNA synthesis with low concentrations of actinomycin D did not interfere with polysome formation. Therefore, the conversion is accomplished by the activation of existing free ribosomes rather than by accumulation of newly synthesized particles. The large free ribosome pool of resting lymphocytes is thus an essential source of components for accelerated protein synthesis early in lymphocyte activation, before increased synthesis can provide a sufficient number of new ribosomes. Free ribosomes accumulate once more after 24 to 48 hours of growth, when RNA and DNA synthetic activity are maximal. This reaccumulation of inactive ribosomes at the peak of growth activity may represent preparation for a return to the resting state where cells are again susceptible to stimulation. Activation of free ribosomes to form polysomes appears to involve modification of at least two steps: (a) dissociation of free ribosomes with stabilization as native subunits, and (b) adjustment of a rate-limiting step at initiation.  相似文献   

3.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

4.
Messenger RNA fractions were obtained from free and membrane bound rat forebrain ribosomes by alkaline phenol extractions. These RNA fractions stimulated protein synthesis in a cell-free rabbit reticulocyte system partially dependent on the addition of exogenous mRNA. The polypeptide products of protein synthesis with RNA fractions derived from free and membrane bound brain ribosomes and reticulocyte ribosomes were compared by polyacrylamide gel electrophoresis and found to have different distributions.  相似文献   

5.
6.
Free and membrane-bound ribosomes were isolated from neuronal perikarya of the immature rat brain-cortex. The two topographic forms of ribosomes were essentially free of contaminating organelles as shown by RNA, protein and marker enzyme analysis. Membrane-bound ribosomes amount to about a quarter of the total ribosomal population in neuronal perikarya. Both forms of ribosomes efficiently carried out cell-free protein synthesis but the membrane-bound fraction was more active than the free ribosomes.  相似文献   

7.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

8.
Comparative studies of free ribosomal RNA and ribosomes were made with two probes, Mg++ ions and ethidium bromide, which interact with RNA in different ways. Mg++. E. coli 16 S rRNA and 30 S ribosomes were equilibrated with four different buffers. Equilibration required several days at 4 degrees and several hours at 37 degrees. In all buffers ribosomes bound more Mg than free rRNA, the difference sometimes reaching 20--30%. Ribosomes were more resistant than free rRNA to heat denaturation and their denaturation was more highly cooperative. Ribosomes that bound more Mg++ had higher denaturation temperatures. Ethidium bromide. Fluorescence enhancement studies of ethidium intercalation showed the free 16 S rRNA to have 50--80 binding sites per molecule. A large fraction of these sites were present and accessible in the ribosome, but their ethidium-binding constants were reduced by an order of magnitude. In addition, free rRNA contained a small number of very strong binding sites that were virtually absent in the ribosomes.  相似文献   

9.
Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.  相似文献   

10.
Pancreatic ribosomes (guinea pig) aggregate and lose upon treatment with polyamines, particularly spermine, their bound secretory enzymes. Spermine, at 0.5 mM, for example, causes the release of about 85 per cent of the chymotrypsinogen and RNase, and from 85 to 100 per cent of the ribosomal amylase. At the same time, the particles lose about 10 per cent of their RNA, 7 to 24 per cent of their total protein, and from 75 to 100 per cent of their Mg++. Observations with the electron microscope confirm the heavy agglutinating of the ribosomes but otherwise show little change in the structure of the particles. Using radioactive spermine it was found that, concomitant with the loss of bound enzymes and Mg++ from the ribosomes, spermine became bound to the particle. The extent of binding ranged from 0.29 to 1.49 µmoles per 10µmoles RNA-P. The bound radioactive spermine can be removed by subsequent treatment of the ribosomes with GTP, ATP, or P-P, which treatment also removes most of the RNA of the particles, leaving behind ribosomes with a much lower RNA/protein ratio. From this evidence it was inferred that spermine, in releasing the Mg++ of the particle, becomes salt-linked to the free phosphate hydroxyl groups of the RNA. Freshly isolated pancreatic and hepatic ribosomes contain very little spermine, about 0.1 to 0.2 µmoles polyamine/10 µmoles RNA-P. The results are discussed in terms of the linkages between the structural protein, the bound secretory enzymes, and the RNA of the ribosomes.  相似文献   

11.
Incubation of cerebral cortical tissue from immature rats in the presence of [32P]orthophosphate resulted in similar rates of incorporation of radioactivity into the proteins of free and membrane-bound ribosomes. Incorporation of label into ribosomal proteins of both species continued actively for at least 3 hours. Since recovery of membrane-bound ribosomes from rat cerebral cortex is quite low, further analyses of the radioactive phosphoproteins were restricted to the free ribosome population. A significant fraction of the radioactivity which was precipitated with trichloroacetic acid was not removed by heating in trichloroacetic acid at 90 degrees or extracted with organic solvents and therefore was presumed to be covalently bound to protein. The radioactive phosphoryl groups present in the ribosomal proteins were mainly in ester linkages since they were readily removed by exposure to 1 N NaOH, relatively unaltered by 1N HCl, and unaffected by hydroxylamine. This conclusion was supported by the isolation of labeled o-phosphoserine and o-phosphothreonine residues from hydrolysates of ribosomal proteins. A significant fraction of the labeled phosphoproteins in the purified ribosomes appeared to be bound tightly to the ribosome structure since only 40% of the radioactivity could be removed by extraction of these ribosomes with 1 M KCl. Phosphorylation of proteins of cerebral monoribosomes was more rapid than the same process in polyribosomes from the same source. Eight radioactive phosphoprotein bands could be detected by electrophoresis of proteins obtained from unfractionated cerebral ribosomes on unidimensional polyacrylamide gels containing sodium dodecyl sulfate. The protein nature of these materials was confirmed by pronase digestion. Proteins of subribosomal particles isolated from the total free ribosomal population were labeled differentially. When dissociation was carried out in the presence of EDTA, the small subunit contained four radioactive phosphoprotein bands, whereas the large subunit contained five. Three of the radioactive phosphoprotein components of the small subunit were removed when dissociation of cerebral ribosomes which were previously washed with high salt media was carried out in the presence of puromycin and high salt. However, only the largest labeled phosphoprotein band of the large subunit was removed by this procedure. This component exhibited the same electrophoretic mobility as one of the radioactive phosphoprotein bands which was removed from the small subunit by high salt treatment..  相似文献   

12.
Analysis of in vivo phosphorylation of mouse liver ribosomal proteins was performed by two-dimensional polyacrylamide gel electrophoresis following 32P-injection. Our method is special and differs from other eukaryotic systems reported in that all proteins separated on the first dimension gel are completely solubilized, moving quantitatively to the second dimension gel. Only ribosomes from polysomes were used, ensuring analysis of ribosomes actively engaged in protein synthesis. We resolved sixty-five distinct proteins from ribosomes from membrane bound or free polysomes. In both cases radioautography revealed similar labeled patterns with one highly phosphorylated ribosomal protein and five marginally labeled spots.  相似文献   

13.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding.  相似文献   

14.
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.  相似文献   

15.
Ribosomes from skeletal muscle of diabetic rats were less active than normal ribosomes in protein synthesis directed by turnip-yellow-mosaic-virus RNA. The proportion of ribosomes from muscle of diabetic rats capable of binding turnip-yellow-mosaic-virus RNA was greater than normal, but there was no difference in the equilibrium constants for the binding reaction. The turnip-yellow-mosaic-virus RNA was bound preferentially to the small (40S) ribosomal subunit, whereas the decrease due to diabetes in its translation was associated with the large (60S) subunit. Thus the diminished capacity of ribosomes from muscle of diabetic rats to translate turnip-yellow-mosaic-virus RNA was not the result of decreased binding of the template.  相似文献   

16.
Free and membrane-bound ribosomes were prepared from the brains of young (3- and 8-day-old) and adult (30 day) rats by the method of Ramsey and Steele (1977). Though the concentration of RNA in young brain is higher than that in adult brain, the fraction of the RNA which is ribosomal is virtually the same (64%) as is the ratio of free ribosomes total ribosomes (61%) at all ages studied. The rate of protein synthesis measured in vivo, expressed in the usual terms of “% per h”, is much higher in young compared to adult brain, but when expressed as the ribosomal specific activity, i.e. “mg protein synthesized per hour per mg ribosomal RNA”, is the same in the three age groups (0.61, 0.58 and 0.60, respectively). Thus, even during early development, when protein is increasing rapidly, ribosomes are no more active than in adult brain, suggesting that synthesis rates in brain are limited by ribosomal content.  相似文献   

17.
We have isolated cytoplasmic ribosomes from Euglena gracilis and characterized the RNA components of these particles. We show here that instead of the four rRNAs (17-19 S, 25-28 S, 5.8 S and 5 S) found in typical eukaryotic ribosomes, Euglena cytoplasmic ribosomes contain 16 RNA components. Three of these Euglena rRNAs are the structural equivalents of the 17-19 S, 5.8 S and 5 S rRNAs of other eukaryotes. However, the equivalent of 25-28 S rRNA is found in Euglena as 13 separate RNA species. We demonstrate that together with 5 S and 5.8 S rRNA, these 13 RNAs are all components of the large ribosomal subunit, while a 19 S RNA is the sole RNA component of the small ribosomal subunit. Two of the 13 pieces of 25-28 S rRNA are not tightly bound to the large ribosomal subunit and are released at low (0 to 0.1 mM) magnesium ion concentrations. We present here the complete primary sequences of each of the 14 RNA components (including 5.8 S rRNA) of Euglena large subunit rRNA. Sequence comparisons and secondary structure modeling indicate that these 14 RNAs exist as a non-covalent network that together must perform the functions attributed to the covalently continuous, high molecular weight, large subunit rRNA from other systems.  相似文献   

18.
It has been found that preparations of Escherichia coli (MRE-600) ribosomes can display GTPase and ATPase activities independent of elongation factors EF-Tu and EF-G. The GTPase and ATPase are localized on ribosomal 50S subparticles, whereas 30S subparticles are free of the activities and do not stimulate them upon association with the 50S subparticles to form complete ribosomes. The GTPase and ATPase can be removed from the ribosomes and their 50S subparticles by treatment with 1 M NH4Cl or 50% ethanol in the cold. Ribosomal preparations freed from the factor-independent GTPase and ATPase retain their basic functional features. The data obtained do not permit to solve finally whether the factor-independent GTPase and ATPase revealed are components of ribosomes or represent a contamination rather firmly bound to the ribosomes. However, in any case this finding can contribute to an uncoupled hydrolysis of GTP and should be considered when studying the stoichiometry of triphosphate expenditure in the process of ribosomal protein synthesis.  相似文献   

19.
Mobile domains in ribosomes revealed by proton nuclear magnetic resonance   总被引:4,自引:0,他引:4  
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources.  相似文献   

20.
The peptidyl transferase reaction, as measured by the formation of peptidyl-puromycin, was compared for free ribosomes and ribosomes bound to two types of membrane, the endoplasmic reticulum and the outer nuclear membrane. In most respects the reaction catalyzed by the three types of ribosome was similar, demonstrating that interaction of the 60 S ribosomal subunit with the membrane has little effect on the functioning of peptidyl transferase, a 60 S protein. However, both the rate and extent of synthesis of peptidyl puromycin were lower for ribosomes bound to the nuclear membrane than for free or microsome-bound ribosomes. This difference appears to be a direct consequence of the ribosome-membrane interaction, since ribosomes stripped from the nuclear membrane could not be distinguished from the other classes of ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号