首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of inorganic vanadate (Vi) to rabbit muscle phosphoglycerate mutase (PGM), studied by using 51V nuclear magnetic resonance spectroscopy, shows a sigmoidal dependence on vanadate concentration with a stoichiometry of four vanadium atoms per PGM molecule at saturating [Vi]. The data are consistent with binding of one divanadate ion to each of the two subunits of PGM in a noncooperative manner with an intrinsic dissociation constant of 4 X 10(-6) M. The relevance of this result to other studies which have shown that the Vi-stimulated 2,3-diphosphoglycerate (2,3-DPG) phosphatase activity of PGM has a sigmoidal dependence on [Vi] with a Hill coefficient of 2.0 is discussed. At pH 7.0, inorganic phosphate has little effect on the 2,3-DPG phosphatase activity of PGM, even at concentrations as high as 50 mM. Similarly, 25 microM Vi has little effect on the phosphatase activity. However, in the presence of 25 microM Vi, a phosphate concentration of 20 mM increases the phosphatase activity by more than 3-fold. This behavior is rationalized in terms of activation of the phosphatase activity by a phosphate/vanadate mixed anhydride. This interpretation is supported by the observation of strong activation of the phosphatase activity by inorganic pyrophosphate. A molecular mechanism for the observed effects of vanadate is proposed, and the relevance of this study to the possible use of vanadate as a therapeutic agent for the treatment of sickle cell anemia is discussed.  相似文献   

2.
The B-type cofactor-dependent phosphoglycerate mutase (dPGM-B) catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways using 2,3-bisphosphoglycerate as the cofactor. The crystal structures of human dPGM-B bound with citrate were determined in two crystal forms. These structures reveal a dimerization mode conserved in both of dPGM and BPGM (bisphosphoglycerate mutase), based on which a dPGM/BPGM heterodimer structure is proposed. Structural comparison supports that the conformational changes of residues 13-21 and 98-117 determine PGM/BPGM activity differences. The citrate-binding mode suggests a substrate-binding model, consistent with the structure of Escherichia coli dPGM/vanadate complex. A chloride ion was found in the center of the dimer, providing explanation for the contribution of chloride ion to dPGM activities. Based on the structural information, the possible reasons for the deficient human dPGM mutations found in some patients are also discussed.  相似文献   

3.
Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.  相似文献   

4.
The genes for CA1Pase (2-carboxy-D-arabinitol-1-bisphosphate phosphatase) from French bean, wheat, Arabidopsis and tobacco were identified and cloned. The deduced protein sequence included an N-terminal motif identical with the PGM (phosphoglycerate mutase) active site sequence [LIVM]-x-R-H-G-[EQ]-x-x-[WN]. The corresponding gene from wheat coded for an enzyme with the properties published for CA1Pase. The expressed protein lacked PGM activity but rapidly dephosphorylated 2,3-DPG (2,3-diphosphoglycerate) to 2-phosphoglycerate. DTT (dithiothreitol) activation and GSSG inactivation of this enzyme was pH-sensitive, the greatest difference being apparent at pH 8. The presence of the expressed protein during in vitro measurement of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity prevented a progressive decline in Rubisco turnover. This was due to the removal of an inhibitory bisphosphate that was present in the RuBP (ribulose-1,5-bisphosphate) preparation, and was found to be PDBP (D-glycero-2,3-pentodiulose-1,5-bisphosphate). The substrate specificity of the expressed protein indicates a role for CA1Pase in the removal of 'misfire' products of Rubisco.  相似文献   

5.
The enzyme 3-phosphoglycerate mutase was purified 192-fold from Streptomyces coelicolor, and its N-terminal sequence was determined. The enzyme is tetrameric with a subunit Mr of 29,000. It is 2,3-bisphosphoglycerate dependent and inhibited by vanadate. The gene encoding the enzyme was cloned by using a synthetic oligonucleotide probe designed from the N-terminal peptide sequence, and the complete coding sequence was determined. The deduced amino acid sequence is 64% identical to that of the phosphoglycerate mutase of Saccharomyces cerevisiae and has substantial identity to those of other phosphoglycerate mutases.  相似文献   

6.
R Rosa  I Audit  J Rosa 《Biochimie》1975,57(9):1059-1063
Electrophoresis of 3-phosphoglycerate mutase from erythrocytes of man and several animal species has been performed on cellulose acetate strips. In most cases the electrophoretic pattern of this enzymatic activity shows three bands. 2,3-diphosphoglycerate phosphatase and diphosphoglycerate mutase from erythrocytes of the same species have been revealed after migration during the same electrophoresis. We found that the band of 2,3-diphosphoglycerate phosphatase and the band of diphosphoglycerate mutase activities migrate at the same level as one of the bands corresponding to 3-phosphoglycerate mutase. Here, we discuss the possible existence of a single molecule carrying three enzymatic activities.  相似文献   

7.
磷酸甘油酸变位酶(phosphoglycerate mutase,PGM)是糖代谢过程中的关键酶,催化3-磷酸甘油酸和2-磷酸甘油酸之间的相互转换。根据催化反应中对辅因子2,3-二磷酸甘油酸的依赖关系分为两种类型:辅因子依赖型PGM(dPGM)和辅因子非依赖型PGM(iPGM)。本文对PGM的分类、结构及功能进行了详细介绍。  相似文献   

8.
The microdetermination of 2,3-diphosphoglycerate   总被引:1,自引:0,他引:1  
A procedure for microestimation of 2,3-diphosphoglycerate, utilizing its role as coenzyme in the phosphoglycerate mutase reaction is described. The coenzymic activity was determined by assaying phosphoglycerate mutase polarimetrically without a coupled enzyme. This method is applicable to samples containing as little as 0.002 μmole of 2,3-diphosphoglycerate/ml. The content in various biological extracts was determined.  相似文献   

9.
Phosphoglycerate mutase catalyzes the interconversion between 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms, that is either cofactor (2,3-diphosphoglycerate) dependent or cofactor-independent. These two enzymes have no similarity in amino acid sequence, tertiary structure, and in catalytic mechanism. Wuchereria bancrofti (WB) contains the cofactor-independent form, whereas other organisms can possess the dependent form or both. Since, independent phosphoglycerate mutase (iPGM) is an essential gene for the survival of nematodes, and it has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase found in mammals, it represents an attractive drug target for the filarial nematodes. In this current study, a putative cofactor-iPGM gene was identified in the protein sequence of the WB. In the absence of crystal structure, a three-dimensional structure was determined using the homology modeling approximation, and the most stable protein conformation was identified through the molecular dynamics simulation studies, using GROMACS 4.5. Further, the functional or characteristic residues were identified through the sequence analysis, potential inhibitors were short-listed and validated, and potential inhibitors were ranked using the cheminformatics and molecular dynamics simulations studies, Prime MM-GBSA approach, respectively.  相似文献   

10.
Binding of 2,3-diphosphoglycerate to monophosphoglycerate mutase, of which it is an obligatory cofactor, causes changes in the resonance positions of the 31P nuclear magnetic resonance spectra of both phosphate groups. It has previously been shown that these resonances shift when other glycolytic enzymes, such as phosphoglycerate kinase, are added to form the 2,3-diphosphoglycerate . monophosphoglycerate mutase . phosphoglycerate kinase complex. In view of this association, we have examined the set of glycolytic enzymes from aldolase to pyruvate kinase and found evidence of direct communication between all of these enzymes. A multi-enzyme complex of 1--2 . 10(6) daltons has been separated from broken cell ghosts by Biogel column filtration and evidence has been presented to show that this complex exhibits aldolase, glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase activity. The glycolytic multi-enzyme complex interacts with the outer face of inside-out vesicles prepared from human red cells and the interaction is suppressed by application of 10(-6) M ouabain to the inner face of these vesicles. These studies show that the conformation of the enzymes comprising the megadalton complex are responsive to the application of ouabain to the outer red cell membrane surface.  相似文献   

11.
Dissociation of the human erythrocyte into cytoplasmic and membranous components, shows that all of the cell's intrinsic 2,3-diphosphoglycerate phosphatase activity is associated with the soluble component. Further fractionaction of the cytoplasm on DEAE cellulose illustrates that both 1,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase activities occur coincidently within one peak. Thermal denaturation of the peak proteins at 60° results in a parallel loss in phosphatase and mutase activity. The identical phenomenon is observed in the presence of the 2,3-diphosphoglycerate phosphatase activator, 2-phosphoglycolate. Homogeneous 1,3-diphosphoglycerate mutase, which quantitatively accounts for all of the intrinsic 2,3-diphosphoglycerate phosphatase within the red cell, also exhibits thermal instability at 60°. These findings suggest that the phosphoglycerate bypass in erythrocytes is under the control of a single, bifunctional enzyme.  相似文献   

12.
Different types of enzymes from yeast and from rabbit muscle which catalyze phosphoryl transfer reactions involved in glucose metabolism differ in their sensitivity to vanadate. Phospho glucomutase and phosphoglycerate mutase are inhibited at the μM range. 2,3-Bisphosphoglycerate phosphatase is completely inhibited by 0.5 mM vanadate. 2,3-Bisphosphoglycerate synthase, hexokinase, phosphoglycerate kinase and fructose-1,6-P2 phosphatase are partially inhibited by mM vanadate. Phosphofructokinase and pyruvate kinase are not affected. The glycolytic enzymes which mechanism does not involves phosphoryl transfer step are not affected by vanadate.  相似文献   

13.
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae, have been chosen to detect complex formation and possible channeling, using molecular dynamics simulation. The enzymes were separated by 10 angstroms distance and placed in a water-filled box of size 173 x 173 x 173 angstroms. Three different orientations have been investigated. The two initial 3-phosphoglycerate substrate molecules near the active centers of the initial structure of PGM have been replaced with final product (2-phosphoglycerate) molecules, and 150 mM NaCl together with three Mg2+ ions have been added to the system to observe post-catalytic activity under near-physiological conditions. Analysis of interaction energies and conformation changes for 3 nsec simulation indicates that PGM and enolase do show binding affinity between their near active regions, which is necessary for channeling to occur. Interaction of the C-terminal residues Ala239 and Val240 of PGM (which partially "cap" the 2-phosphoglycerate) with enolase also favors the existence of channeling.  相似文献   

14.
The Bacillus subtilis genes tpi, pgm, and eno, encoding triose phosphate isomerase, phosphoglycerate mutase (PGM), and enolase, respectively, have been cloned and sequenced. These genes are the last three in a large putative operon coding for glycolytic enzymes; the operon includes pgk (coding for phosphoglycerate kinase) followed by tpi, pgm, and eno. The triose phosphate isomerase and enolase from B. subtilis are extremely similar to those from all other species, both eukaryotic and prokaryotic. However, B. subtilis PGM bears no resemblance to mammalian, fungal, or gram-negative bacterial PGMs, which are dependent on 2,3-diphosphoglycerate (DPG) for activity. Instead, B. subtilis PGM, which is DPG independent, is very similar to a DPG-independent PGM from a plant species but differs from the latter in the absolute requirement of B. subtilis PGM for Mn2+. The cloned pgm gene has been used to direct up to 25-fold overexpression of PGM in Escherichia coli; this should facilitate purification of large amounts of this novel Mn(2+)-dependent enzyme. Inactivation of pgm plus eno in B. subtilis resulted in extremely slow growth either on plates or in liquid, but growth of these mutants was enhanced by supplementation of media with malate. However, these mutants were asporogenous with or without malate supplementation.  相似文献   

15.
Phosphoglycerate mutases (PGM) catalyze the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate as part of glycolysis and gluconeogenesis. Two structural and mechanistically unrelated types of PGMs are known, a cofactor (2,3-bisphosphoglycerate)-dependent (dPGM) and a cofactor-independent enzyme (iPGM). Here, we report the characterization of the first archaeal cofactor-dependent PGM from Thermoplasma acidophilum, which is encoded by ORF TA1347. This ORF was cloned and expressed in Escherichia coli and the recombinant protein was characterized as functional dPGM. The enzyme constitutes a 46 kDa homodimeric protein. Enzyme activity required 2,3-bisphosphoglycerate as cofactor and was inhibited by vanadate, a specific inhibitor of dPGMs in bacteria and eukarya; inhibition could be partially relieved by EDTA. Histidine 23 of the archaeal dPGM of T. acidophilum, which corresponds to active site histidine in dPGMs from bacteria and eukarya, was exchanged for alanine by site directed mutagenesis. The H23A mutant was catalytically inactive supporting the essential role of H23 in catalysis of the archaeal dPGM. Further, an archaeal cofactor-independent PGM encoded by ORF AF1751 from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus was characterized after expression in E. coli. The monomeric 46 kDa protein showed cofactor-independent PGM activity and was stimulated by Mn2+ and exhibited high thermostability up to 70°C. A comprehensive phylogenetic analysis of both types of archaeal phosphoglycerate mutases is also presented.  相似文献   

16.
Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have only the cofactor-dependent form, whereas other organisms can possess the independent form or both. Caenorhabditis elegans has been predicted to have only independent phosphoglycerate mutase. In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi. They are 70% identical to each other and related to known bacterial, fungal, and protozoan enzymes. The nematode enzymes possess the catalytic serine, and other key amino acids proposed for catalysis and recombinant enzymes showed typical phosphoglycerate mutase activities in both the glycolytic and gluconeogenic directions. The gene is essential in C. elegans, because the reduction of its activity by RNA interference led to embryonic lethality, larval lethality, and abnormal body morphology. Promoter reporter analysis indicated widespread expression in larval and adult C. elegans with the highest levels apparent in the nerve ring, intestine, and body wall muscles. The enzyme was found in a diverse group of nematodes representing the major clades, indicating that it is conserved throughout this phylum. Our results demonstrate that nematodes, unlike vertebrates, utilize independent phosphoglycerate mutase in glycolytic and gluconeogenic pathways and that the enzyme is probably essential for all nematodes.  相似文献   

17.
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae have been chosen to detect complex formation between active centers (a/c), using molecular dynamics simulation. Enzymes have been separated by 10 A distance and placed in a water box of size 173 x 173 x 173 A. Three different orientations where a/c of PGM and enolase were positioned toward each other have been used for investigation. The two initial 3-phosphoglycerate substrates at near active centers of initial structure of PGM have been replaced with final 2-phosphoglycerate products. 150mM of NaCl have been added to the system to observe binding activity in the near physiological conditions. Analysis of interaction energies and conformation changes for 3ns simulation indicates that PGM and enolase do show binding affinity between their near active regions. Moreover the similarity between final conformations of the first two orientations with the initial conformation of the third orientation suggests that complex formation between a/c of enzymes is not confined only by discussed orientations. Clear interaction of enolase with C-terminal tail of PGM has been recorded. These results suggest that substrate direct transfer mechanism may exist between enzymes.  相似文献   

18.
The interconversion of 3-phosphoglycerate and 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). In bacteria and eukaryotes two structurally distinct enzymes have been found, a cofactor-dependent and a cofactor-independent (iPGM) type. Sequence analysis of archaeal genomes did not find PGMs of either kind, but identified a new family of proteins, distantly related to iPGMs. In this study, these predicted archaeal PGMs from Pyrococcus furiosus and Methanococcus jannaschii have been functionally produced in Escherichia coli, and characterization of the purified proteins has confirmed that they are iPGMs. Analysis of the available microbial genomes indicates that this new type of iPGM is widely distributed among archaea and also encoded in several bacteria. In addition, as has been demonstrated in certain bacteria, some archaea appear to possess an alternative, cofactor-dependent PGM.  相似文献   

19.
Blue dextran or Cibacron Blue F3GA has been shown to inhibit yeast phosphoglycerate kinase [EC 2.7.2.3] competitively with respect to ATP (Thompson et al. (1975) Proc. Natl. Acad. Sci. U.S. 72, 663--667; Beissner and Rudolph (1979) J. Biol. Chem. 254, 6273--6277). However, we have found that phosphoglycerate kinase of Lactobacillus plantarum was inhibited by Cibacron Blue F3GA, the blue chromophore of blue dextran, noncompetitively with respect to ATP, but competitively with respect to 3-phosphoglycerate. Further inhibition studies with Cibacron Blue F3GA suggest that one molecule of the dye was bound per molecule of phosphoglycerate kinase at a saturated level of either substrate, but two molecules of the dye were bound per molecule of the kinase with an unsaturated level of either substrate used as a fixed substrate. Furthermore, phosphoglycerate mutase [EC 2.7.5.3] of Leuconostoc dextranicum was also inhibited by Cibacron Blue F3GA competitively with respect to 3-phosphoglycerate and noncompetitively with respect to 2,3-bisphosphoglycerate. These results suggest that the 3-phosphoglycerate-binding site on both phosphoglycerate kinase and phosphoglycerate mutase can interact with Cibacron Blue F3GA.  相似文献   

20.
Type M phosphoglycerate mutase and skeletal muscle bisphosphoglycerate synthase-phosphatase from pig are similarly affected by Hg2+. Both enzymes lose the phosphoglycerate mutase and the glycerate-2,3-P2 synthase activities, and increase the glycerate-2,3-P2 phosphatase activity upon Hg2+-treatment. In contrast, bisphosphoglycerate phosphatase from pig skeletal muscle is inactivated by Hg2+. These results confirm the similarity between phosphoglycerate mutase and bisphosphoglycerate synthase-phosphatase. In addition they support the existence of separate binding sites for monophosphoglycerates and for bisphosphoglycerates at the phosphoglycerate mutase active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号