首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3′-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.  相似文献   

2.
In this study, we analyzed double-strand break (DSB) repair in Arabidopsis (Arabidopsis thaliana) at various developmental stages. To analyze DSB repair, we used a homologous recombination (HR) and point mutation reversion assays based on nonfunctional beta-glucuronidase reporter genes. Activation of the reporter gene through HR or point mutation reversion resulted in the appearance of blue sectors after histochemical staining. Scoring of these sectors at 3-d intervals from 2 to 31 d post germination (dpg) revealed that, although there was a 100-fold increase in the number of genomes per plant, the recombination frequency only increased 30-fold. This translates to a recombination rate at 31 dpg (2.77 x 10(-8)) being only 30% of the recombination rate at 2 dpg (9.14 x 10(-8)). Conversely, the mutation frequency increased nearly 180-fold, resulting in a 1.8-fold increase in mutation rate from 2 to 31 dpg. Additional analysis of DSBs over the early developmental stages revealed a substantial increase in the number of strand breaks per unit of DNA. Furthermore, RNA analysis of Ku70 and Rad51, two key enzymes in two different DSB repair pathways, and further protein analysis of Ku70 revealed an increase in Ku70 levels and a decrease of Rad51 levels in the developing plants. These data suggest that DSB repair mechanisms are developmentally regulated in Arabidopsis, whereby the proportion of breaks repaired via HR substantially decreases as the plants mature.  相似文献   

3.
The precision of the repair of linearized plasmid DNA was analyzed using a nonsense mutation inactivated beta-glucuronidase (uidA) marker gene delivered to Nicotiana plumbaginifolia protoplasts and Nicotiana tabacum leaves. The reversions at the stop-codon allowed the reactivation of the marker gene. Here we report that irradiation of plant protoplasts or plant tissue prior to the delivery of the DNA repair substrate significantly potentiated the reversion frequency leading to a two to fourfold increase over the non-irradiated samples. The increase in reversion frequency was highest upon the delivery of the linear substrates, suggesting increased sensitivity of the double-strand break (DSB) repair apparatus to UV-C. Moreover, the most significant UV irradiation effect was observed in plasmids linearized in close proximity to the stop codon. The higher reversion frequency in UV-treated samples was apparently due to the involvement of free radicals as pretreatment of irradiated tissue with radical scavenging enzyme N-acetyl-l-cysteine abolished the effect of UV-C. We discuss the UV-sensitivity of various repair enzymes as well as possible mechanisms of involvement of error-prone polymerases in processing of DSBs.  相似文献   

4.
5.
Tomso DJ  Kreuzer KN 《Genetics》2000,155(4):1493-1504
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the genetic analysis of break repair. SSA occurs readily in broken plasmid DNA and is independent of the strand exchange protein UvsX and its accessory factor UvsY. We use the unique features of T4 DNA metabolism to examine the link between SSA repair and DNA replication and demonstrate directly that the DNA polymerase and the major replicative helicase of the phage are not required for SSA repair. We also show that the Escherichia coli RecBCD enzyme can mediate the degradation of broken DNA during early, but not late, times of infection. Finally, we consider the status of broken ends during the course of the infection and propose a model for SSA during T4 infections.  相似文献   

6.
Expansion of a CGG-repeat tract in the 5′ UTR of FMR1 is responsible for the Fragile X-related disorders (FXDs), FXTAS, FXPOI and FXS. Previous work in a mouse model of these disorders has implicated proteins in the base excision and the mismatch repair (MMR) pathways in the expansion mechanism. However, the precise role of these factors in this process is not well understood. The essential role of MutLγ, a complex that plays a minor role in MMR but that is essential for resolving Holliday junctions during meiosis, raises the possibility that expansions proceed via a Holliday junction-like intermediate that is processed to generate a double-strand break (DSB). We show here in an FXD mouse model that LIG4, a ligase essential for non-homologous end-joining (NHEJ), a form of DSB repair (DSBR), protects against expansions. However, a mutation in MRE11, a nuclease that is important for several other DSBR pathways including homologous recombination (HR), has no effect on the extent of expansion. Our results suggest that the expansion pathway competes with NHEJ for the processing of a DSB intermediate. Thus, expansion likely proceeds via an NHEJ-independent DSBR pathway that may also be HR-independent.  相似文献   

7.
8.
Double-strand break repair in Ku86- and XRCC4-deficient cells.   总被引:24,自引:10,他引:14       下载免费PDF全文
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends or in protection of the ends from nucleases. However, end joining in XRCC4-deficient cells has not been examined. Here we show that joining of both matched and mismatched DNA ends occurs efficiently in XRCC4-deficient cells. Furthermore, analysis of junctions shows that XRCC4 is not required to protect the ends from degradation. However, nucleotide sequence analysis of junctions derived from joining of mismatched DNA ends in XRCC4-deficient cells revealed a strong preference for a junction containing a 7 nt homology. Similar results were obtained in Ku86-deficient cells. These data suggest that in the absence of XRCC4 or Ku86, joining is assisted by base pairing interactions, supporting the hypothesis that these proteins may participate in aligning or stabilizing intermediates in end joining.  相似文献   

9.
Holmes AM  Haber JE 《Cell》1999,96(3):415-424
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  相似文献   

10.
11.
We followed-up for mortality and cancer incidence 1088 healthy non-smokers from a population-based study, who were characterized for 22 variants in 16 genes involved in DNA repair pathways. Follow-up was 100% complete. The association between polymorphism and mortality or cancer incidence was analyzed using Cox Proportional Hazard regression models. Ninety-five subjects had died in a median follow-up time of 78 months (inter-quartile range 59-93 months). None of the genotypes was clearly associated with total mortality, except variants for two Double-Strand Break DNA repair genes, XRCC3 18067 C>T (rs#861539) and XRCC2 31479 G>A (rs#3218536). Adjusted hazard ratios were 2.25 (1.32-3.83) for the XRCC3 C/T genotype and 2.04 (1.00-4.13) for the T/T genotype (reference C/C), and 2.12 (1.14-3.97) for the XRCC2 G/A genotype (reference G/G). For total cancer mortality, the adjusted hazard ratios were 3.29 (1.23-7.82) for XRCC3 C/T, 2.84 (0.81-9.90) for XRCC3 T/T and 3.17 (1.21-8.30) for XRCC2 G/A. With combinations of three or more adverse alleles, the adjusted hazard ratio for all cause mortality was 17.29 (95% C.I. 8.13-36.74), and for all incident cancers the HR was 5.28 (95% C.I. 2.17-12.85). Observations from this prospective study suggest that polymorphisms of genes involved in the repair of DNA double-strand breaks significantly influence the risk of cancer and non-cancer disease, and can influence mortality.  相似文献   

12.
The role of 3'-5' exonucleases in double-strand break (DSB)-promoted recombination was studied in crosses of bacteriophage T4, in which DSBs were induced site specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i x ets1, where ets1 designates an insertion in the rIIB gene carrying the cleavage site for SegC and i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site. The frequency/distance relationship was obtained in crosses of the wild-type phage and dexA1 (deficiency in deoxyribonuclease A), D219A (deficiency in the proofreading exonuclease of DNA polymerase), and tsL42 (antimutator allele of DNA polymerase) mutants. In all the mutants, recombinant frequency in crosses with the i-markers located at 12 and 33 bp from ets1 was significantly enhanced, implying better preservation of 3'-terminal sequences at the ends of the broken DNA. The effects of dexA1 and D219A were additive, suggesting an independent action of the corresponding nucleases in the DSB repair pathway. The recombination enhancement in the dexA1 mutant was limited to short distances (<100 bp from ets1), whereas in the D219A mutant a significant enhancement was seen at all the tested distances. From the character of the frequency/distance relationship, it is inferred that the synthesis-dependent strand-annealing pathway may operate in the D219A mutant. The recombination-enhancing effect of the tsL42 mutation could be explained by the hypothesis that the antimutator 43Exo removes a shorter stretch of paired nucleotides than the wild-type enzyme does during hydrolysis of the unpaired terminus in the D-loop intermediate. The role of the proofreading exonuclease in the formation of a robust replicative fork is discussed.  相似文献   

13.
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i × j) and three-factor (i k × j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1 × i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1–i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1 × i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1 × i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII+ recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3–8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.  相似文献   

14.
Competent Bacillus subtilis were investigated for their ability to support the repair of UV-irradiated bacteriophage and bacteriophage DNA. UV-irradiated bacteriophage DNA cannot be repaired to the same level as UV-irradiated bacteriophage, suggesting a deficiency in the ability of competent cells to repair UV damage. However, competent cells were as repair proficient as noncompetent cells in their ability to repair irradiated bacteriophage in marker rescue experiments. The increased sensitivity of irradiated DNA is shown to be due to the inability of excision repair to function on transfecting DNA in competent bacteria. Furthermore, competent cells show no evidence of possessing an inducible BsuR restriction system to complement their inducible BsuR modification enzyme.  相似文献   

15.
How probiotics such as Bacillus subtilis exert a protective effect has been much debated. In this issue of Cell Host & Microbe, Fujiya et al. reveal that a B. subtilis quorum-sensing signal molecule, the competence- and sporulation-stimulating factor (CSF), is internalized via the mammalian oligopeptide transporter OCTN2, where it induces the heat shock protein Hsp27, which protects intestinal cells against oxidant-mediated tissue damage and loss of barrier function.  相似文献   

16.
Bacillus subtilis strains UVSSP-42-1 (hcr42 ssp1) and UVSSP-1-1 (hcr1 ssp1) are ultraviolet (UV) radiation sensitive both as dormant spores and as vegetative cells. These strains are unable to excise cyclobutane-type dimers from the deoxyribonucleic acid (DNA) of irradiated vegetative cells and fail to remove spore photoproduct from the DNA of irradiated spores either by excision (controlled by gene hcr) or by spore repair (controlled by gene ssp1). When irradiated soon after spore germination, these strains excise dimers, but not spore photoproduct, from their DNA. This process, termed germinative excision repair, functions only transiently in the germination phase and is responsible for the high UV resistance of germinated spores and for their temporary capacity to host cell reactivate irradiated phages infecting them. The recA1 mutation confers higher UV sensitivity to the germinated spores, but does not interfere with dimer removal by germinative excision repair.  相似文献   

17.
18.
Coordination of DNA ends during double-strand break (DSB) repair was studied in crosses of bacteriophage T4 in which DSBs were induced site-specifically by SegC endonuclease in the DNA of only one of the parents. Coupling of the genetic exchanges to the left and to the right of the DSB was measured in the wild-type genetic background as well as in T4 strains bearing mutations in several recombination genes: 47, uvsX, uvsW, 59, 39 and 61. The observed quantitative correlation between the degree of coupling and position of the recombining markers in relation to the DSB point implies that the two variants of the splice/patch-coupling (SPC) pathway, the "sequential SPC" and the "SPC with fork collision", operate during DSB repair. In the 47 mutant with or without a das suppressor, coupling of the exchanges was greatly reduced, indicating a crucial role of the 47/46 complex in coupling of the genetic exchanges on the two sides of the DSB. From the observed dependence of the apparent coupling on the intracellular ratio of breakable and unbreakable chromosomes in different genetic backgrounds it is inferred that linking of the DNA ends by 47/46 protein is the mechanism that accounts for their concerted action during DSB repair. A mechanism of replicative resolution of D-loop intermediate (RR pathway) is suggested to explain the phenomenology of DSB repair in DNA arrest and uvsW mutants. A "left"-"right" bias in the recombinogenic action of two DNA ends of the broken chromosome was observed which was particularly prominent in the 59 (41-helicase loader) and 39 (topoisomerase) mutants. Phage topoisomerase II (gp39-52-60) is indispensable for growth in the DNA arrest mutants: the doubles 47(-)39(-), uvsX 39(-) and 59(-)39(-) are lethal.  相似文献   

19.
Two X-ray-sensitive mutants of the CHO K1 cell line were examined for their cell-cycle progression after irradiation with gamma-rays, and for their ability to rejoin double-strand breaks (DSBs) as detected by neutral filter elution. Both mutants were impaired in DSB rejoining and both were irreversibly blocked in the G2 phase of the cell cycle as determined by cytofluorometry. From one mutant we have isolated several revertants. The revertants stem from genomic DNA transfection experiments and may have been caused by gene uptake. All revertants survived gamma-irradiation as did the wild-type CHO line. One of them has been examined for its ability to rejoin DSBs and was found to be similar to the wild type.  相似文献   

20.
We have found that SMC-like RecN protein, RecF and RecO proteins that are involved in DNA recombination play an important role in DNA double-strand break (DSB) repair in Bacillus subtilis. Upon induction of DNA DSBs, RecN, RecO and RecF localized as a discrete focus on the nucleoids in a majority of cells, whereas two or three foci were rarely observed. RecN, RecO and RecF co-localized to the induced foci, with RecN localizing first, while RecO localized later, followed by RecF. Thus, three repair proteins were differentially recruited to distinct sites on the nucleoids, potentially constituting active DSB repair centres (RCs). RecF did not form regular foci in the absence of RecN and failed to form any foci in recO cells, demonstrating a central role for RecN and RecO in initializing the formation of RCs. RecN/O/F foci were detected in recA, recG or recU mutant cells, indicating that the proteins act upstream of proteins involved in synapsis or post-synapsis. In the absence of exogenous DNA damage, RCs were rare, but they accumulated in recA and recU cells, suggesting that DSBs occur frequently in the absence of RecA or RecU. The results suggest a model in which RecN that forms multimers in solution and high-molecular-weight complexes in cells containing DSBs initiates the formation of RCs that mediate DSB repair with the homologous sister chromosome, which presents a novel concept for DSB repair in prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号