首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propagation of transmissible spongiform encephalopathies is believed to involve the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). An important step toward understanding the mechanism of this conversion is to elucidate the folding pathway(s) of the prion protein. We reported recently (Apetri, A. C., and Surewicz, W. K. (2002) J. Biol. Chem. 277, 44589-44592) that the folding of wild-type prion protein can best be described by a three-state sequential model involving a partially folded intermediate. Here we have performed kinetic stopped-flow studies for a number of recombinant prion protein variants carrying mutations associated with familial forms of prion disease. Analysis of kinetic data clearly demonstrates the presence of partially structured intermediates on the refolding pathway of each PrP variant studied. In each case, the partially folded state is at least one order of magnitude more populated than the fully unfolded state. The present study also reveals that, for the majority of PrP variants tested, mutations linked to familial prion diseases result in a pronounced increase in the thermodynamic stability, and thus the population, of the folding intermediate. These data strongly suggest that partially structured intermediates of PrP may play a crucial role in prion protein conversion, serving as direct precursors of the pathogenic PrP(Sc) isoform.  相似文献   

2.
Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.  相似文献   

3.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   

4.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

5.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

6.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

7.
In prion disease, direct interaction between the cellular prion protein (PrP(C)) and its misfolded disease-associated conformer PrP(Sc) is a crucial, although poorly understood step promoting the formation of nascent PrP(Sc) and prion infectivity. Recently, we hypothesized that three regions of PrP (corresponding to amino acid residues 23-33, 98-110, and 136-158) interacting specifically and robustly with PrP(Sc), likely represent peptidic components of one flank of the prion replicative interface. In this study, we created epitope-tagged mouse PrP(C) molecules in which the PrP sequences 23-33, 98-110, and 136-158 were modified. These novel PrP molecules were individually expressed in the prion-infected neuroblastoma cell line (ScN2a) and the conversion of each mutated mouse PrP(C) substrate to PrP(Sc) compared with that of the epitope-tagged wild-type mouse PrP(C). Mutations within PrP 98-110, substituting all 4 wild-type lysine residues with alanine residues, prevented conversion to PrP(Sc). Furthermore, when residues within PrP 136-140 were collectively scrambled, changed to alanines, or amino acids at positions 136, 137, and 139 individually replaced by alanine, conversion to PrP(Sc) was similarly halted. However, other PrP molecules containing mutations within regions 23-33 and 101-104 were able to readily convert to PrP(Sc). These results suggest that PrP sequence comprising residues 98-110 and 136-140 not only participates in the specific binding interaction between PrP(C) and PrP(Sc), but also in the process leading to conversion of PrP(Sc)-sequestered PrP(C) into its disease-associated form.  相似文献   

8.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

9.
The pathogenic isoform (PrP(Sc) ) of the host-encoded normal cellular prion protein (PrP(C) ) is believed to be the infectious agent of transmissible spongiform encephalopathies. Spontaneous conversion of α-helix-rich recombinant PrP into the PrP(Sc) -like β-sheet-rich form or aggregation of cytosolic PrP has been found to be accelerated under reducing conditions. However, the effect of reducing conditions on PrP(Sc) -mediated conversion of PrP(C) into PrP(Sc) has remained unknown. In this study, the effect of reducing conditions on the binding of bacterial recombinant mouse PrP (MoPrP) with PrP(Sc) and the conversion of MoPrP into proteinase K-resistant PrP (PrP(res) ) using a cell-free conversion assay was investigated. High concentrations of dithiothreitol did not inhibit either the binding or conversion reactions of PrP(Sc) from five prion strains. Indeed, dithiothreitol significantly accelerated mouse-adapted BSE-seeded conversion. These data suggest that conversion of PrP(Sc) derived from a subset of prion strains is accelerated under reducing conditions, as has previously been shown for spontaneous conversion. Furthermore, the five prion strains used could be classified into three groups according to their efficiency at binding and conversion of MoPrP and cysteine-less mutants under both reducing and nonreducing conditions. The resulting classification is similar to that derived from biological and biochemical strain-specific features.  相似文献   

10.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

11.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

12.
The prion protein (PrP) in a living cell is associated with cellular membranes. However, all previous biophysical studies with the recombinant prion protein have been performed in an aqueous solution. To determine the effect of a membrane environment on the conformational structure of PrP, we studied the interaction of the recombinant human prion protein with model lipid membranes. The protein was found to bind to acidic lipid-containing membrane vesicles. This interaction is pH-dependent and becomes particularly strong under acidic conditions. Spectroscopic data show that membrane binding of PrP results in a significant ordering of the N-terminal part of the molecule. The folded C-terminal domain, on the other hand, becomes destabilized upon binding to the membrane surface, especially at low pH. Overall, these results show that the conformational structure and stability of the recombinant human PrP in a membrane environment are substantially different from those of the free protein in solution. These observations have important implications for understanding the mechanism of the conversion between the normal (PrP(C)) and pathogenic (PrP(Sc)) forms of prion protein.  相似文献   

13.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

14.
The disease process for transmissible spongiform encephalopathies (TSEs), in one way or another, involves the conversion of a predominantly alpha-helical normal host-coded prion protein (PrP(C)) to an abnormally folded (predominantly beta sheet) protease resistant isoform (PrP(Sc)). Several alternative mechanisms have been proposed for this auto-catalytic process. Here the dynamical behavior of one of these models, the nucleated polymerization model, is studied by Monte Carlo discrete-event simulation of the explicit conversion reactions. These simulations demonstrate the characteristic dynamical behavior of this model for prion replication. Using estimates for the reaction rates and concentrations, time courses are estimated for concentration of PrP(Sc), PrP(Sc) aggregates, and PrP(C) as well as size distributions for the aggregates. The implications of these dynamics on protein misfolding cyclic amplification (PMCA) is discussed.  相似文献   

15.
Infectious prion diseases initiate infection within lymphoid organs where prion infectivity accumulates during the early stages of peripheral infection. In a mouse-adapted prion infection, an abnormal isoform (PrP(Sc)) of prion protein (PrP) accumulates in follicular dendritic cells within lymphoid organs. Human prions, however, did not cause an accumulation of PrP(Sc) in the wild type mice. Here, we report that knock-in mouse expressing humanized chimeric PrP demonstrated PrP(Sc) accumulations in follicular dendritic cells following human prion infections, including variant Creutzfeldt-Jakob disease. The accumulated PrP(Sc) consisted of recombinant PrP, but not of the inoculated human PrP. These accumulations were detectable in the spleens of all mice examined 30 days post-inoculation. Infectivity of the spleen was also evident. Conversion of humanized PrP in the spleen provides a rapid and sensitive bioassay method to uncover the infectivity of human prions. This model should facilitate the prevention of infectious prion diseases.  相似文献   

16.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

17.
Transmissible spongiform encephalopathies are associated with the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). Here we have examined the kinetics of folding and unfolding reactions for the recombinant human prion protein C-terminal fragment 90-231 at pH 4.8 and 7.0. The stopped-flow data provide clear evidence for the population of an intermediate on the refolding pathway of the prion protein as indicated by a pronounced curvature in chevron plots and the presence of significant burst phase amplitude in the refolding kinetics. In addition to its role in the normal prion protein folding, this intermediate likely represents a crucial monomeric precursor of the pathogenic PrP(Sc) isoform.  相似文献   

18.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

19.
The transformation of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is implicated in the invariably fatal transmissible spongiform encephalopathies. To identify a mechanism to prevent the undesired PrP(C)-->PrP(Sc) transformation, we investigated the interactions of recombinant prion proteins with a number of potential therapeutic agents which inhibit the PrP(Sc) formation, infectivity, and the accumulation of the misfolded form. We show that the prion aggregates formed in the presence of six compounds have no beta-structure, which is typical of the infectious form, and possess considerably higher alpha-helical content than the normal PrP(C). The investigated compounds stimulate the formation of alpha-helices and the destruction of beta-structure. They prevent the transformation of alpha-helical structure into beta-sheets. Probably, this is the reason for the resistance to PrP(C)-->PrP(Sc) transformation in the presence of these compounds. The results may be useful for the future therapy of neurodegenerative diseases.  相似文献   

20.
The prion protein undergoes a profound conformational change when the cellular isoform (PrP(C)) is converted into the disease-causing form (PrP(Sc)). Limited proteolysis of PrP(Sc) produces PrP 27-30, which readily polymerizes into amyloid. To study the relationship between PrP amyloid and infectivity, we employed organic solvents that perturb protein conformation. Hexafluoro-2-propanol (HFIP), which promotes alpha-helix formation, modified the ultrastructure of PrP amyloid and decreased the beta-sheet content as well as prion infectivity. HFIP reversibly decreased the binding of Congo red dye to the PrP amyloid rods while inactivation of prion infectivity was irreversible. In contrast, 1,1,1-trifluoro-2-propanol (TFIP) did not inactivate prion infectivity but like HFIP, TFIP did alter the morphology of the rods and abolished Congo red binding. Solubilization using various solvents and detergents produced monomeric and dimeric PrP that lacked infectivity. Proteinase K resistance of detergent-treated PrP 27-30 showed no correlation with scrapie infectivity. Our results separate prion infectivity from the amyloid properties of PrP 27-30 and underscore the dependence of prion infectivity on PrP(Sc) conformation. These findings also demonstrate that the specific beta-sheet-rich structures required for prion infectivity can be differentiated from those required for amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号