首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Magnetospirillum gryphiswaldense uses intracellular chains of membrane‐enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome‐associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c‐binding magnetochrome domains, and deletion of either mamZ or its C‐terminal ferric reductase‐like component resulted in an identical phenotype. All mutants displayed WT‐like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake‐like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.  相似文献   

3.
4.
Magnetotactic bacteria synthesize intracellular magnetosomes that are comprised of membrane‐enveloped magnetic crystals. In this study, to identify the early stages of magnetosome formation, we isolated magnetosomes containing small magnetite crystals and those containing regular‐sized magnetite crystals from Magnetospirillum magneticum AMB‐1. This was achieved by using a novel size fractionation technique, resulting in the identification of a characteristic protein (Amb1018/MamY) from the small magnetite crystal fraction. The gene encoding MamY was located in the magnetosome island. Like the previously reported membrane deformation proteins, such as bin/amphiphysin/Rvs (BAR) and the dynamin family proteins, recombinant MamY protein bound directly to the liposomes, causing them to form long tubules. We established a mamY gene deletion mutant (ΔmamY) and analysed MamY protein localization in it for functional characterization of the protein in vivo. The ΔmamY mutant was found to have expanded magnetosome vesicles and a greater number of small magnetite crystals relative to the wild‐type strain, suggesting that the function of the MamY protein is to constrict the magnetosome membrane during magnetosome vesicle formation, following which, the magnetite crystals grow to maturity within them.  相似文献   

5.
Bacterial denitrification reverses nitrogen fixation in the global N-cycle by transforming nitrate or nitrite to dinitrogen. Both nitrite and nitric oxide (NO) are considered as the chemical species within the denitrification pathway, that precede nitrous oxide (N2O), the first recognized intermediate with N,N-bonds antecedent to N2. Molecular cloning of the structural genes for NO reductase from Pseudomonas stutzeri has allowed us to generate the first mutants defective in NO utilization (Nor- phenotype) by marker exchange of the norCB genes with a gene cassette for gentamicin resistance. Nitric oxide reductase was found to be an indispensable component for denitrification; its loss constituted a conditionally lethal mutation. NO as the sole product accumulated from nitrite by mutant cells induced for nitrite respiration (denitrification). The Nor- mutant lost the capability to reduce NO and did not grow anymore anaerobically on nitrate. A Nir-Nor- double mutation, that inactivated also the respiratory nitrite reductase cytochrome cd1 rendered the bacterium again viable under anaerobiosis. Our observations provide evidence for a denitrification pathway in vivo of NO2(-)----NO----N2O, and N,N-bond formation catalyzed by NO reductase and not by cytochrome cd1.  相似文献   

6.
Magnetospirillum gryphiswaldense MSR‐1 synthesizes membrane‐enclosed magnetite (Fe3O4) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome‐associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome‐directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi‐disciplinary approach to define the role of MamB during magnetosome formation. Using site‐directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo‐electron tomography, we show that MamB is most likely an active magnetosome‐directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport‐independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C‐terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.  相似文献   

7.
The redox proteins and enzymes involved in denitrification inThiosphaera pantotropha exhibited a differential expression in response to oxygen. Pseudoazurin was completely repressed during batch or continuous culture under oxic conditions. Cytochromecd 1 nitrite reductase was also heavily repressed after aerobic growth. Nitrite, nitric oxide, and nitrous oxide reductase activities were detected in intact cells under some conditions of aerobic growth, indicating that aerobic denitrification might occur in some circumstances. However, the rates of denitrification were much lower after aerobic growth than after anaerobic growth. Growth with nitrous oxide as sole electron acceptor mimicked aerobic growth in some respects, implying that expression of parts of the denitrification apparatus might be controlled by the redox state of a component of the electron transport chain rather than by oxygen itself. Nevertheless, the regulation of expression of nitrous oxide reductase was linked to the oxygen concentration.  相似文献   

8.
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which encodes NsrR. NsrR is a repressor in the absence of NO, but norB expression is derepressed by NO in an NsrR-dependent manner. nsrR-deficient mutants grow by denitrification more rapidly than wild-type N. meningitidis, and this is coincident with the upregulation of both NO reductase and nitrite reductase even under aerobic conditions in the absence of nitrite or NO. The NsrR-dependent repression of aniA (unlike that of norB) is not lifted in the presence of NO. The role of NsrR in the control of expression of aniA is linked to the function of the anaerobic activator protein FNR: analysis of nsrR and fnr single and nsrR fnr double mutants carrying an aniA promoter lacZ fusion indicates that the role of NsrR is to prevent FNR-dependent aniA expression under aerobic conditions, indicating that FNR in N. meningitidis retains considerable activity aerobically.  相似文献   

9.
Magnetotactic bacteria (MTB) align along the Earth''s magnetic field by the activity of intracellular magnetosomes, which are membrane-enveloped magnetite or greigite particles that are assembled into well-ordered chains. Formation of magnetosome chains was found to be controlled by a set of specific proteins in Magnetospirillum gryphiswaldense and other MTB. However, the contribution of abiotic factors on magnetosome chain assembly has not been fully explored. Here, we first analyzed the effect of growth conditions on magnetosome chain formation in M. gryphiswaldense by electron microscopy. Whereas higher temperatures (30 to 35°C) and high oxygen concentrations caused increasingly disordered chains and smaller magnetite crystals, growth at 20°C and anoxic conditions resulted in long chains with mature cuboctahedron-shaped crystals. In order to analyze the magnetosome chain in electron microscopy data sets in a more quantitative and unbiased manner, we developed a computerized image analysis algorithm. The collected data comprised the cell dimensions and particle size and number as well as the intracellular position and extension of the magnetosome chain. The chain analysis program (CHAP) was used to evaluate the effects of the genetic and growth conditions on magnetosome chain formation. This was compared and correlated to data obtained from bulk magnetic measurements of wild-type (WT) and mutant cells displaying different chain configurations. These techniques were used to differentiate mutants due to magnetosome chain defects on a bulk scale.  相似文献   

10.
Bo T  Wang K  Ge X  Chen G  Liu W 《Current microbiology》2012,65(1):98-107
Magnetotactic bacteria (MTB) are capable of synthesizing nano-sized, intracellular membrane-bound magnetosomes. To learn more about the genetic factors involved in magnetosome formation, transposon mutagenesis was carried out by conjugation using a hyperactive mariner transposon to obtain nonmagnetic mutants of Magnetospirillum magneticum AMB-1. A mutant with defect in uvrA gene encoding the DNA binding subunit of the UvrABC complex responsible for the process of nucleotide excision repair, was obtained. Growth, magnetosome formation and maintenance of magnetosome island (MAI) were further analyzed in the absence of UvrA. Interruption of uvrA led to decreased capacity to form magnetosome when cultured in the presence of oxygen. The deficiency in UvrA also resulted in an accelerated loss of the MAI under aerobic conditions indicating that the nucleotide excision repair system guards against the instability of the MAI. The incapacity of MTB to efficiently initiate recombination mediated by RecA rescued the instability of MAI observed in uvrA mutant. Elevated recombination activity resulting from the accumulation of unrepaired mutations may thus account for the instability of MAI in the absence of UvrA.  相似文献   

11.
Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the α‐subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS‐1, which is phylogenetically classified as a member of the δ‐Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB‐1 and M. gryphiswaldense MSR‐1. Three magnetosome‐specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS‐1, AMB‐1, and MSR‐1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen‐like protein and putative iron‐binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS‐1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC‐1 were assigned to a cryptic plasmid of strain RS‐1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet‐shaped crystals in this microorganism.  相似文献   

12.
13.
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane‐bounded, tens‐of‐nanometre‐sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet‐shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite‐producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.  相似文献   

14.
Genes involved in magnetite biomineralization are clustered in the genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense. We analyzed a 482-kb genomic fragment, in which we identified an approximately 130-kb region representing a putative genomic "magnetosome island" (MAI). In addition to all known magnetosome genes, the MAI contains genes putatively involved in magnetosome biomineralization and numerous genes with unknown functions, as well as pseudogenes, and it is particularly rich in insertion elements. Substantial sequence polymorphism of clones from different subcultures indicated that this region undergoes frequent rearrangements during serial subcultivation in the laboratory. Spontaneous mutants affected in magnetosome formation arise at a frequency of up to 10(-2) after prolonged storage of cells at 4 degrees C or exposure to oxidative stress. All nonmagnetic mutants exhibited extended and multiple deletions in the MAI and had lost either parts of or the entire mms and mam gene clusters encoding magnetosome proteins. The mutations were polymorphic with respect to the sites and extents of deletions, but all mutations were found to be associated with the loss of various copies of insertion elements, as revealed by Southern hybridization and PCR analysis. Insertions and deletions in the MAI were also found in different magnetosome-producing clones, indicating that parts of this region are not essential for the magnetic phenotype. Our data suggest that the genomic MAI undergoes frequent transposition events, which lead to subsequent deletion by homologous recombination under physiological stress conditions. This can be interpreted in terms of adaptation to physiological stress and might contribute to the genetic plasticity and mobilization of the magnetosome island.  相似文献   

15.
Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells. However, more recent studies failed to detect the MagA protein among polypeptides associated with the magnetosome membrane and did not identify magA within the magnetosome island, a conserved genomic region that is essential for magnetosome formation in magnetotactic bacteria. This raised increasing doubts about the presumptive role of magA in bacterial magnetosome formation, which prompted us to reassess MagA function by targeted deletion in Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Contrary to previous reports, magA mutants of both strains still were able to form wild-type-like magnetosomes and had no obvious growth defects. This unambiguously shows that magA is not involved in magnetosome formation in magnetotactic bacteria.  相似文献   

16.
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.  相似文献   

17.
The involvement of cytochrome P450nor (P450nor) is the most striking feature of the fungal denitrifying system, and has never been shown in bacterial systems. To establish the physiological significance of the P450nor, we constructed and investigated mutants of Fusarium oxysporum that lacked the gene for P450nor. We mutated the gene by targeted integration of a disrupted gene into the chromosome of F. oxysporum. The mutants were shown to contain neither P450nor protein nor nitric oxide (NO) reductase (Nor) activity, implying that they are indeed deficient in P450nor. These mutants had apparently lost the denitrifying activity and failed to evolve nitrous oxide (N2O) upon incubation under oxygen-limiting conditions in the presence of nitrate. Their mycelia exhibited normal levels of dissimilatory nitrite reductase (Nir) activity and were able to evolve NO under these conditions. The promoter region of the P450nor gene was fused to lacZ and introduced into the wild-type strain of F. oxysporum. The transformed strain produced β-galactosidase under denitrifying conditions as efficiently as the wild type does P450nor. These results represent unequivocal genetic evidence that P450nor is essential for the reduction of NO to N2O, the last step in denitrification by F. oxysporum. Received: 28 June 1999 / Accepted: 22 December 1999  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号