首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubulointerstitial injuries are crucial histological alterations that predict the deterioration of renal function in chronic kidney disease. ONO-1301, a novel sustained-release prostacyclin analog, accompanied by thromboxane synthase activity, exerts therapeutic effects on experimental pulmonary hypertension, lung fibrosis, cardiomyopathy, and myocardial ischemia, partly associated with the induction of hepatocyte growth factor (HGF). In the present study, we examined the therapeutic efficacies of ONO-1301 on tubulointerstitial alterations induced by unilateral ureteral obstruction (UUO). After inducing unilateral ureteral obstruction in C57/BL6J mice, a single injection of sustained-release ONO-1301 polymerized with poly (D,L-lactic-co-glycolic acid) sustained-release ONO-1301 (SR-ONO) significantly suppressed interstitial fibrosis, accumulation of types I and III collagen, increase in the number of interstitial fibroblast-specific protein-1 (FSP-1)(+) cells, and interstitial infiltration of monocytes/macrophages (F4/80(+)) in the obstructed kidneys (OBK; day 7). Treatment with SR-ONO significantly suppressed the increase of the renal levels of profibrotic factor TGF-β and phosphorylation of Smad2/3, and elevated the renal levels of HGF in the OBK. In cultured mouse proximal tubular epithelial cells (mProx24), ONO-1301 significantly ameliorated the expression of fibroblast-specific protein-1 and α-smooth muscle actin as well as phosphorylation of Smad3 and increased the expression of zonula occludens-1 and E-cadherin in the presence of TGF-β1 as detected by immunoblot and immunocytochemistry, partly dependent on PGI(2) receptor-mediated signaling. Administration of rabbit anti-HGF antibodies, but not the control IgG, partly reversed the suppressive effects of SR-ONO on tubulointerstitial injuries in the OBK. Taken together, our findings suggest the potential therapeutic efficacies of ONO-1301 in suppressing tubulointerstitial alterations partly mediated via inducing HGF, an antifibrotic factor counteracting TGF-β.  相似文献   

2.
Previous studies have demonstrated that mice disrupted with the cyclooxygenase-2 gene showed much more severe liver damage compared with wild-type mice after liver injury, and prostaglandins (PGs) such as PGE(1/2) and PGI(2) have decreased hepatic injury, but the mechanisms by which prostaglandins exhibit protective action on the liver have yet to be addressed. In the present study, we investigated the mechanism of the protective action of PGI(2) using the synthetic IP receptor agonist ONO-1301. In primary cultures of hepatocytes and nonparenchymal liver cells, ONO-1301 did not show protective action directly on hepatocytes, whereas it stimulated expression of hepatocyte growth factor (HGF) in nonparenchymal liver cells. In mice, peroral administration of ONO-1301 increased hepatic gene expression and protein levels of HGF. Injections of CCl4 induced acute liver injury in mice, but the onset of acute liver injury was strongly suppressed by administration of ONO-1301. The increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by CCl4 were suppressed by 10 mg/kg ONO-1301 to 39.4 and 33.6%, respectively. When neutralizing antibody against HGF was administered with ONO-1301 and CCl4, the decreases by ONO-1301 in serum ALT and AST, apoptotic liver cells, and expansion of necrotic areas in liver tissue were strongly reversed by neutralization of endogenous HGF. These results indicate that ONO-1301 increases expression of HGF and that hepatoprotective action of ONO-1301 in CCl4-induced liver injury may be attributable to its activity to induce expression of HGF, at least in part. The potential for involvement of HGF-Met-mediated signaling in the hepatotrophic action of endogenous prostaglandins generated by injury-dependent cyclooxygenase-2 induction is considerable.  相似文献   

3.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

4.
The involvement of VEGF-A as well as the therapeutic efficacy of angiogenesis inhibitors in diabetic nephropathy have been reported. We recently reported the therapeutic effects of vasohibin-1 (VASH-1), an endogenous angiogenesis inhibitor, in a type 1 diabetic nephropathy model (Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Diabetes 58: 2365-2375, 2009). In this study, we investigated the therapeutic efficacy of VASH-1 on renal alterations in obese mice with type 2 diabetes. Diabetic db/db mice received intravenous injections of adenoviral vectors encoding human VASH-1 (AdhVASH-1) and were euthanized 8 wk later. AdhVASH-1 treatment resulted in significant suppression of glomerular hypertrophy, glomerular hyperfiltration, albuminuria, increase in the CD31(+) glomerular endothelial area, F4/80(+) monocyte/macrophage infiltration, the accumulation of type IV collagen, and mesangial matrix. An increase in the renal levels of VEGF-A, VEGFR-2, transforming growth factor (TGF)-β1, and monocyte chemoattractant protein-1 in diabetic animals was significantly suppressed by AdhVASH-1 (immunoblotting). AdhVASH-1 treatment significantly recovered the loss and altered the distribution patterns of nephrin and zonula occludens (ZO)-1 and suppressed the increase in the number of fibroblast-specific protein-1 (FSP-1(+)) and desmin(+) podocytes in diabetic mice. In vitro, recombinant human VASH-1 (rhVASH-1) dose dependently suppressed the upregulation of VEGF induced by high ambient glucose (25 mM) in cultured mouse podocytes. In addition, rhVASH-1 significantly recovered the mRNA levels of nephrin and the protein levels of ZO-1 and P-cadherin and suppressed the increase in protein levels of desmin, FSP-1, Snail, and Slug in podocytes under high-glucose condition. Taken together, these results suggest the potential use of VASH-1 as a novel therapeutic agent in type 2 diabetic nephropathy mediated via antiangiogenic effects and maintenance of podocyte phenotype in association with antiproteinuric effects.  相似文献   

5.
《Free radical research》2013,47(10):1238-1248
Abstract

Hepatocyte growth factor (HGF) is a potential therapeutic agent for diabetic nephropathy. The mechanisms for the renoprotective effect of HGF have been studied extensively, but antioxidant signalling of HGF in diabetic nephropathy is minimally understood. Our observations indicated that a nitrated guanine nucleotide, 8-nitroguanosine 3′5′-cyclic monophosphate (8-nitro-cGMP) diminished in high glucose (HG)-treated rat mesangial cells (RMC). However, HGF obviously lifted intracellular 8-nitro-cGMP level, which was accompanied by remarkably suppressed oxidative stress as evidenced by decreased reactive oxygen species and malondialdehyde levels and elevated glutathione level. Inhibitor of soluble guanylyl cyclase (sGC) NS-2028 and inhibitor of nitric oxide synthase (NOS) l-NMMA could block increased 8-nitro-cGMP level and repress oxidative stress by HGF. Accordingly, these two inhibitors abrogated HGF-induced nuclear accumulation of NF-E2 related factor 2 (Nrf2) and up-regulation of Nrf2 downstream glutamate-cysteine ligase catalytic subunit (GCLC) expression. In conclusion, HGF ameliorated HG-mediated oxidative stress in RMC at least in part by enhancing nitric oxide and subsequent 8-nitro-cGMP production.  相似文献   

6.
Guoguo S  Akaike T  Tao J  Qi C  Nong Z  Hui L 《Free radical research》2012,46(10):1238-1248
Abstract Hepatocyte growth factor (HGF) is a potential therapeutic agent for diabetic nephropathy. The mechanisms for the renoprotective effect of HGF have been studied extensively, but antioxidant signalling of HGF in diabetic nephropathy is minimally understood. Our observations indicated that a nitrated guanine nucleotide, 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) diminished in high glucose (HG)-treated rat mesangial cells (RMC). However, HGF obviously lifted intracellular 8-nitro-cGMP level, which was accompanied by remarkably suppressed oxidative stress as evidenced by decreased reactive oxygen species and malondialdehyde levels and elevated glutathione level. Inhibitor of soluble guanylyl cyclase (sGC) NS-2028 and inhibitor of nitric oxide synthase (NOS) l-NMMA could block increased 8-nitro-cGMP level and repress oxidative stress by HGF. Accordingly, these two inhibitors abrogated HGF-induced nuclear accumulation of NF-E2 related factor 2 (Nrf2) and up-regulation of Nrf2 downstream glutamate-cysteine ligase catalytic subunit (GCLC) expression. In conclusion, HGF ameliorated HG-mediated oxidative stress in RMC at least in part by enhancing nitric oxide and subsequent 8-nitro-cGMP production.  相似文献   

7.

Background

A prostacyclin analogue, ONO-1301, is reported to upregulate beneficial proteins, including stromal cell derived factor-1 (SDF-1). We hypothesized that the sustained-release delivery of ONO-1301 would enhance SDF-1 expression in the acute myocardial infarction (MI) heart and induce bone marrow cells (BMCs) to home to the myocardium, leading to improved cardiac function in mice.

Methods and Results

ONO-1301 significantly upregulated SDF-1 secretion by fibroblasts. BMC migration was greater to ONO-1301-stimulated than unstimulated conditioned medium. This increase was diminished by treating the BMCs with a CXCR4-neutralizing antibody or CXCR4 antagonist (AMD3100). Atelocollagen sheets containing a sustained-release form of ONO-1301 (n = 33) or ONO-1301-free vehicle (n = 48) were implanted on the left ventricular (LV) anterior wall immediately after permanent left-anterior descending artery occlusion in C57BL6/N mice (male, 8-weeks-old). The SDF-1 expression in the infarct border zone was significantly elevated for 1 month in the ONO-1301-treated group. BMC accumulation in the infarcted hearts, detected by in vivo imaging after intravenous injection of labeled BMCs, was enhanced in the ONO-1301-treated hearts. This increase was inhibited by AMD3100. The accumulated BMCs differentiated into capillary structures. The survival rates and cardiac function were significantly improved in the ONO-1301-treated group (fractional area change 23±1%; n = 22) compared to the vehicle group (19±1%; n = 20; P = 0.004). LV anterior wall thinning, expansion of infarction, and fibrosis were lower in the ONO-1301-treated group.

Conclusions

Sustained-release delivery of ONO-1301 promoted BMC recruitment to the acute MI heart via SDF-1/CXCR4 signaling and restored cardiac performance, suggesting a novel mechanism for ONO-1301-mediated acute-MI heart repair.  相似文献   

8.
The balance between prostacyclin and thromboxane A2 (TXA2) plays an important role in pulmonary homeostasis. However, little information is available regarding the therapeutic potency of these prostanoids for pulmonary fibrosis. We have recently developed ONO-1301, a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity. Thus we investigated whether repeated administration of ONO-1301 attenuates bleomycin-induced pulmonary fibrosis in mice. After intratracheal injection of bleomycin or saline, mice were randomized to receive repeated subcutaneous administration of ONO-1301 or vehicle. Bronchoalveolar lavage (BAL) and histological analyses were performed at 3, 7, and 14 days after bleomycin injection. In vitro studies using mouse lung fibroblasts were also performed. ONO-1301 significantly attenuated the development of bleomycin-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. ONO-1301 significantly reduced total cell count, neutrophil count, and total protein level in BAL fluid in association with a marked reduction of TXB2. A single administration of ONO-1301 significantly increased plasma cAMP level for >2 h. In vitro, ONO-1301 and a cAMP analog dose-dependently reduced cell proliferation in mouse lung fibroblasts. The reduction in cell proliferation by ONO-1301 was attenuated by a protein kinase A (PKA) inhibitor. Furthermore, bleomycin mice treated with ONO-1301 had a significantly higher survival rate than those given vehicle. These results suggest that repeated administration of ONO-1301 attenuates the development of bleomycin-induced pulmonary fibrosis and improves survival in bleomycin mice, at least in part by inhibition of TXA2 synthesis and activation of the cAMP/PKA pathway.  相似文献   

9.
BACKGROUND: Diabetic nephropathy is a leading cause of end-stage renal disease in industrialized countries. Previous studies have documented that angiotensin converting enzyme (ACE) inhibitors consistently reduce albuminuria and retard the progression of diabetic nephropathy. However, the involvement of angiotensin II in diabetic nephropathy is not fully understood. MATERIALS AND METHODS: In this study we compared the effects of CS-866, a new angiotensin II type 1 receptor antagonist, to that of an ACE inhibitor, temocapril hydrochloride, on the development and progression of diabetic nephropathy using Otsuka Long-Evans Tokushima fatty rats, a type II diabetes mellitus model animal. RESULTS: High doses of CS-866 or temocapril treatment were found to significantly improve urinary protein and beta(2)-microglobulin excretions in diabetic rats. In electron microscopic analysis, loss of glomerular anionic sites, one of the causes of glomerular hyperpermeability in diabetic nephropathy, was found to be significantly prevented by CS-866 treatment. Light microscopic examinations revealed that both treatments ameliorated glomerular sclerosis and tubulointerstitial injury in diabetic rats. Furthermore, high doses of CS-866 or temocapril treatment significantly reduced the positive stainings for transforming growth factor-beta (TGF-beta), vascular endothelial growth factor, and type IV collagen in glomeruli of diabetic rats. CONCLUSIONS: These results indicate that intrarenal angiotensin II type 1 receptor activation plays a dominant role in the development and progression of diabetic nephropathy. Our study suggests that CS-866 represents a valuable new drug for the treatment of diabetic patients with nephropathy.  相似文献   

10.
11.
Angiogenesis plays an important role in the pathogenesis of diabetic nephropathy (DN). In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with antiangiogenic activity in DN. In a type 1 diabetic rat model, resveratrol treatment blunted the increases of urine albumin excretion, kidney weight and creatinine clearance rate. The increases of glomerular diameter, mesangium accumulation, glomerular basement membrane thickness and renal fibrosis in diabetic rats were also reduced by resveratrol treatment. In the diabetic kidney, increased expression of vascular endothelial growth factor (VEGF), Flk-1 and angiopoietin 2, and reduced expression of Tie-2 were observed. These changes in angiogenic hormones and associated receptors were attenuated by resveratrol treatment. No changes in angiopoietin 1 expression were detected among each group of rats. Resveratrol also significantly downregulated high glucose-induced VEGF and Flk-1 expressions in cultured mouse glomerular podocytes and endothelial cells, respectively. These effects were attenuated by knocking-down silent information regulator 1 (Sirt1) expression. In contrast, upregulation of Sirt1 in cultured endothelial cells reduced Flk-1 expression. Increased permeability and cellular junction disruption of cultured endothelial cells caused by VEGF were also inhibited by resveratrol pretreatment. Taken together, the present study demonstrated that resveratrol may attenuate DN via modulating angiogenesis.  相似文献   

12.
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.  相似文献   

13.
Insulin-like growth factor I (IGF-I) accumulates in the kidney following the onset of diabetes, initiating diabetic renal hypertrophy. Increased renal IGF-I protein content, which is not reflected in messenger RNA (mRNA) levels, suggests that renal IGF-I accumulation is due to sequestration of circulating IGF-I rather than to local synthesis. It has been suggested that IGF-I is trapped in the kidney by IGF binding protein 1 (IGFBP-1). We administered purified human IGFBP-1 (hIGFBP-1) to nondiabetic and diabetic mice as three daily sc injections for 14 days, starting 6 days after induction of streptozotocin diabetes when the animals were overtly diabetic. Markers of early diabetic renal changes (i.e., increased kidney weight, glomerular volume, and albuminuria) coincided with accumulation of renal cortical IGF-I despite decreased mRNA levels in 20-day diabetic mice. Human IGFBP-1 administration had no effect on increased kidney weight or albuminuria in early diabetes, although it abolished renal cortical IGF-I accumulation and glomerular hypertrophy in diabetic mice. Increased IGF-I levels in kidneys of normal mice receiving hIGFBP-1 were not reflected on kidney parameters. IGFBP-1 administration in diabetic mice had only minor effects on diabetic renal changes. Accordingly, these results did not support the hypothesis that IGFBP-1 plays a major role in early renal changes in diabetes.  相似文献   

14.
Diabetes and hyperhomocysteinemia (HHcy) are two independent risk factors for glomeruloslerosis and renal insufficiency. Although PPARgamma agonists such as ciglitazone (CZ) are known to modulate diabetic nephropathy, the role of CZ in diabetes-associated HHcy and renopathy is incompletely defined. We tested the hypothesis that induction of PPARgamma by CZ decreases tissue Hcy level; this provides a protective role against diabetic nephropathy. C57BL/6J mice were administered alloxan to create diabetes. Mice were grouped to 0, 1, 10, 12, and 16 wk of treatment; only 12- and 16-wk animals received CZ in drinking water after a 10-wk alloxan treatment. In diabetes, PPARgamma cDNA, mRNA, and protein expression were repressed, whereas an increase in plasma and glomerular Hcy levels was observed. CZ normalized PPARgamma mRNA and protein expression and glomerular level of Hcy, whereas plasma level of Hcy remained unchanged. GFR was dramatically increased at 1-wk diabetic induction, followed by hypofiltration at 10 wk, and was normalized by CZ treatment. This result corroborated with glomerular and preglomerular arteriole histology. A steady-state increase of RVR in diabetic mice became normal with CZ treatment. CZ ameliorated decrease bioavailability of NO in the diabetic animal. Glomerular MMP-2 and MMP-9 activities as well as TIMP-1 expression were increased robustly in diabetic mice and normalized with CZ treatment. Interestingly, TIMP-4 expression was opposite to that of TIMP-1 in diabetic and CZ-treated groups. These results suggested that diabetic nephropathy exacerbated glomerular tissue level of Hcy, and this caused further deterioration of glomerulus. CZ, however, protected diabetic nephropathy in part by activating PPARgamma and clearing glomerular tissue Hcy.  相似文献   

15.
Activation of protein kinase C (PKC) is implicated as an important mechanism by which diabetes causes vascular complications. We have recently shown that a PKC beta inhibitor ameliorates not only early diabetes-induced glomerular dysfunction such as glomerular hyperfiltration and albuminuria, but also overexpression of glomerular mRNA for transforming growth factor beta1 (TGF-beta1) and extracellular matrix (ECM) proteins in streptozotocin-induced diabetic rats, a model for type 1 diabetes. In this study, we examined the long-term effects of a PKC beta inhibitor on glomerular histology as well as on biochemical and functional abnormalities in glomeruli of db/db mice, a model for type 2 diabetes. Administration of a PKC beta inhibitor reduced urinary albumin excretion rates and inhibited glomerular PKC activation in diabetic db/db mice. Administration of a PKC beta inhibitor also prevented the mesangial expansion observed in diabetic db/db mice, possibly through attenuation of glomerular expression of TGF-beta and ECM proteins such as fibronectin and type IV collagen. These findings provide the first in vivo evidence that the long-term inhibition of PKC activation in the renal glomeruli can ameliorate glomerular pathologies in diabetic state, and thus suggest that a PKC beta inhibitor might be an useful therapeutic strategy for the treatment of diabetic nephropathy.  相似文献   

16.
Glomerular mesangial cells both synthesize and respond to insulin-like growth factor-1 (IGF-1). Increased activity of the IGF signaling pathway has been implicated as a major contributor to renal enlargement and subsequent development of diabetic nephropathy. Secreted protein acidic and rich in cysteine (SPARC), a matricellular protein, has been shown to modulate the interaction of cells with growth factors and extracellular matrix. We have reported that primary glomerular mesangial cells derived from SPARC-null mice exhibit an accelerated rate of proliferation and produce substantially decreased levels of transforming growth factor beta1 (TGF-beta1) in comparison to their wild-type counterparts (Francki et al. [1999] J. Biol. Chem. 274: 32145-32152). Herein we present evidence that SPARC modulates IGF-dependent signaling in glomerular mesangial cells. SPARC-null mesangial cells produce increased amounts of IGF-1 and -2, as well as IGF-1 receptor (IGF-1R) in comparison to wild-type cells. Addition of recombinant SPARC to SPARC-null cells inhibited IGF-1-stimulated mitogen activated protein kinase (MAPK) activation and DNA synthesis. We also show that the observed accelerated rate of basal and IGF-1-stimulated proliferation in mesangial cells derived from SPARC-null animals is due, at least in part, to markedly diminished levels of cyclin D1 and the cyclin-dependent kinase (cdk) inhibitors p21 and p27. Since expression of SPARC in the glomerulus is especially prominent during renal injury, our findings substantiate previous claims that SPARC is involved in glomerular remodeling and repair, a process commonly associated with mesangioproliferative glomerulonephritis and diabetic nephropathy.  相似文献   

17.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide, exerting diverse effects. One of its frequently examined functions is cell protection, which is achieved mainly via inhibiting apoptotic, inflammatory and oxidative processes. All its three receptors (PAC1, VPAC1, VPAC2) are expressed in the kidney and PACAP has been shown to have protective effects against different renal pathologies. Diabetic nephropathy is the leading cause of end stage renal disease. The aim of the present study was to investigate the possible ameliorative effect of PACAP in streptozotocin-induced diabetic nephropathy and to evaluate its anti-inflammatory effect in this model. Diabetes was induced by a single intravenous injection of streptozotocin (65 mg/kg) in male Wistar rats. PACAP-treated animals were administered ip. 20 μg PACAP every second day, while untreated animals were given vehicle. Kidneys were removed after 8-weeks survival. Besides the complex histological analysis (glomerular PAS positive area/glomerulus area, tubular damage, arteriolar hyalinosis), expression of several cytokines was evaluated by cytokine array and Luminex assay. Histological analysis revealed severe diabetic changes in kidneys of control diabetic animals (glomerular PAS-positive area expansion, tubular damage, Armanni-Ebstein phenomenon). PACAP treatment significantly diminished the damage. Diabetic kidneys showed significant cytokine activation compared to their healthy controls. PACAP was effective in downregulation of several cytokines including CINC-1, TIMP-1, LIX, MIG, s-ICAM. To conclude, PACAP is effective in ameliorating diabetic nephropathy at least partly through its well-known anti-inflammatory effect. These results raise the opportunity for the use of PACAP as a possible therapeutic or preventive method in treating the complications of diabetes.  相似文献   

18.
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.  相似文献   

19.
Transforming growth factor beta (TGF-β) is a major promoter of diabetic nephropathy. While TGF-β1 is the most abundaft renal isoform, types 2 and 3 are present as well and have identical in vitro effects. Whole kidney extracts were studied 2 weeks after induction of streptozocin diabetes and in control rats. Mean glomerular area was 25% greater in the diabetic animals. TGF-β1 showed a 2-fold increase in message with a 3-fold increase in protein. TGF-β2 mRNA increased approximately 6% while its protein doubled. TGF-β-message increased by 25%, producing a 35% increase in its protein. TGF-β- inducible gene H3 mRNA was increased 35% in the diabetic animals, consistent with increased activity of this growth factor. All isoforms of TGF-β are increased in the diabetic rat kidney. Future studies need to address the specific role that each isoform plays in diabetic nephropathy as well as the impact of therapies on each isoform.  相似文献   

20.
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号