共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex I Inhibitors Induce Dose-Dependent Apoptosis in PC12 Cells: Relevance to Parkinson's Disease 总被引:19,自引:2,他引:19
A. Hartley J. M. Stone C. Heron J. M. Cooper † A. H. V. Schapira 《Journal of neurochemistry》1994,63(5):1987-1990
Abstract: The mode of cell death in Parkinson's disease (PD) substantia nigra is uncertain. However, evidence is accumulating that certain of the biochemical abnormalities present in PD nigra at the time of death may precipitate apoptosis. We have investigated the mode of death induced by complex I inhibition of dopaminergic cell cultures, and our results suggest that both 1-methyl-4-phenylpyridinium and rotenone cause apoptosis at low concentrations and necrosis at high concentrations. This dose-dependent shift in the mode of cell death induced by these mitochondrial toxins may have important implications for the mechanism of neuronal cell death in PD. 相似文献
2.
Mitochondrial Complex I Deficiency in Parkinson''s Disease 总被引:18,自引:1,他引:18
A. H. V. Schapira† J. M. Cooper† D. Dexter†† J. B. Clark§ P. Jenner C. D. Marsden† 《Journal of neurochemistry》1990,54(3):823-827
The structure and function of mitochondrial respiratory-chain enzyme proteins were studied postmortem in the substantia nigra of nine patients with Parkinson's disease and nine matched controls. Total protein and mitochondrial mass were similar in the two groups. NADH-ubiquinone reductase (Complex I) and NADH cytochrome c reductase activities were significantly reduced, whereas succinate cytochrome c reductase activity was normal. These results indicated a specific defect of Complex I activity in the substantia nigra of patients with Parkinson's disease. This biochemical defect is the same as that produced in animal models of parkinsonism by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and adds further support to the proposition that Parkinson's disease may be due to an environmental toxin with action(s) similar to those of MPTP. 相似文献
3.
Abstract: The neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+ ) in the brain striatum has recently been shown to bind at a putatively vesicular site labeled by [3 H]tyramine ([3 H]TY). Whereas in the rat and mouse striatum MPP+ antagonized TY binding competitively, in the cerebellum there was a mixed-type antagonism, which suggests the simultaneous occupancy of two different sites. K i values from displacement curves revealed a fourfold difference in the affinity of MPP+ for TY sites in the two brain regions. The degeneration of central noradrenergic terminals induced by an intraperitoneal injection of the toxin N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine in rats decreased by 80% the maximal number of cerebellar TY binding sites, while not affecting striatal binding. Furthermore, guanethidine, a marker for noradrenaline (NA) vesicles, potently inhibited TY binding in NA-innervated regions, such as the cerebellum and the parietal cortex, and poorly in the striatum. It is concluded (a) that both MPP+ and TY may also label NA vesicles and (b) that the vesicular carriers for dopamine and NA have different characteristics, which may underlie a regional specificity in the rate of endovesicular sequestration of MPP+ , with either neurodegenerative or neuroprotective consequences, depending on the brain area involved. 相似文献
4.
Martin R. Gluck Stephen K. Youngster Rona R. Ramsay Thomas P. Singer William J. Nicklas 《Journal of neurochemistry》1994,63(2):655-661
Abstract: 1-Methyl-4-phenylpyridinium (MPP+), the toxic agent in MPTP-induced dopaminergic neurotoxicity, is thought to act by inhibiting mitochondrial electron transport at complex I. This study examined this latter action further with a series of 4′-alkylated analogues of MPP+. These derivatives had IC50 values that ranged from 0.5 to 110 µM and from 1.6 to 3,300 µM in mitochondria and electron transport particles (ETPs), respectively. The IC50 values of corresponding 4′-alkylated phenylpyridine derivatives to inhibit NADH-linked oxidation ranged from 10 to 205 µM in mitochondria and from 1.7 to 142 µM in ETPs. The potencies of both classes of inhibitors directly correlated with their ability to partition between 1-octanol and water. In mitochondria, increased hydrophobicity resulted in greater inhibition of NADH dehydrogenase but a smaller dependence on the transmembrane electrochemical gradient for accumulation of the pyridiniums as evidenced by an ~600-fold, versus only a 36-fold, increase in the IC50 of MPP+ versus 4′-pentyl-MPP+, respectively, in the presence of uncoupler. In ETPs, the analogous increase in potencies of the more hydrophobic analogues was also consistent with an inhibitory mechanism that relied on differential partitioning into the lipid environment surrounding NADH dehydrogenase. However, the pyridinium charge must play a major role in explaining the inhibitory mechanism of the pyridiniums because their potencies are much greater than would be predicted based solely on hydrophobicity. For example, in ETPs, 4′-decyl-MPP+ was nearly 80-fold more potent than phenylpyridine although the latter compound partitions twice as much into 1-octanol. In addition, the lipophilic anion TPB? was a more effective potentiator of inhibition by pyridiniums possessing greater hydrophilicity (0–5 carbons), consistent with facilitation of accumulation of these analogues within the membrane phase of complex I, probably via ion pairing. These studies delineate further the mechanisms by which this class of compounds is able to accumulate in mitochondria, inhibit complex I activity, and thereby, effect neurotoxicity. 相似文献
5.
Irreversible Inhibition of Mitochondrial Complex I by 1-Methyl-4-Phenylpyridinium: Evidence for Free Radical Involvement 总被引:4,自引:1,他引:4
Abstract: Incubation of 10 m M I-methyl-4-phenylpyridinium (MPP+ ) with sonicated beef heart mitochondria caused an irreversible time-dependent decrease in NADH-ubiquinone-l (CoQ1 ) reductase activity (52% inhibition after 1 h). Inclusion of glutathione, ascorbate, or catalase in the incubation mixture protected the NADH-CoQ1 reductase activity. These results suggest that the interaction of MPP+ with complex I induces free radical generation, which in turn leads to the irreversible inhibition of complex I activity. The generation of free radicals by neurotoxin-induced inhibition of complex I has important implications for our interpretation of the increased oxidative stress observed in Parkinson's disease substantia nigra and for our understanding of the cause(s) of dopaminergic cell death in this disorder. 相似文献
6.
Effects of 1-Methyl-4-Phenylpyridinium on Isolated Rat Brain Mitochondria: Evidence for a Primary Involvement of Energy Depletion 总被引:6,自引:1,他引:6
T. E. Bates S. J. R. Heales S. E. C. Davies P. Boakye J. B. Clark 《Journal of neurochemistry》1994,63(2):640-648
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+ ) on the oxygen consumption, ATP production, H2 O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2 O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2 O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2 O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect. 相似文献
7.
The endogenous monoamine 1-methyl-1,2,3,4-tetrahydroisoquinoline has been shown to prevent the neurotoxic effect of MPP(+) and other endogenous neurotoxins, which produce a parkinsonian-like syndrome in humans. We have tested its potential protective effect in vivo by measuring the protection of 1-methyl-1,2,3,4-tetrahydroisoquinoline in the neurotoxicity elicited by MPP(+) in rat striatum by tyrosine hydroxylase immunocytochemistry. Because we know that cellular damage caused by MPP(+) is primarily the result of mitochondrial respiratory inhibition at the complex I level, we have extended the study further to understand this protective mechanism. We found that the inhibitory effect on the mitochondrial respiration rate induced by MPP(+) in isolated rat liver mitochondria and striatal synaptosomes was prevented by addition of 1-methyl-1,2,3,4-tetrahydroisoquinoline. This compound has no antioxidant capacity; therefore, this property is not involved in its protective effect. Thus, we postulate that the preventive effect that 1-methyl-1,2,3,4-tetrahydroisoquinoline has on mitochondrial inhibition for MPP(+) could be due to a "shielding effect," protecting the energetic machinery, thus preventing energetic failure. These results suggest that this endogenous amine may protect against the effect of several parkinsonism-inducing compounds that are associated with progressive impairment of the mitochondrial function. 相似文献
8.
Matthew J. Krueger† Sergey O. Sablin† Rona Ramsay† Thomas P. Singer†‡§ 《Journal of neurochemistry》1993,61(4):1546-1548
Abstract: Expression of the neurotoxicity of 1-methyl-4-phenyl-1.2,3,6-tetrahydropyridine, following oxidation to l-methyl-4-phenylpyridinium ion (MPP+ ), is believed to involve inhibition of mitochondrial electron transport from NADH dehydrogenase (complex l) to ubquinone. MPP+ and its analogues have been shown to Mock electron transport at or near the same site as two powerful inhibitors of mitochondrial respiration, rotenone and piericidin A. All three types of inhibitors combine at two sites on NADH dehydrogenase, a hydrophilic and hydrophobic one, and occupancy of both sites is required for complete inhibition. Tetraphenylboron anion (TPB− ) in catalytic amounts is known to increase the effectiveness of positively charged MPP+ analogues in blodclng mitochondrial respiration. A part of this effect involves facitation of the entry of MPP+ oongeners into the hydrophobic site by ion pairing, as has been demonstrated in studies with submitochondrial particles (electron transport particles). This communication documents the fact that TPB− , when present in molar excess over the MPP+ analogues, reverses the inhibition. This seems to involve again strong ion pairing. removal of the inhibitory analogue from one to the two binding sites, and concentration of the inhibitor in the membrane, so that only the hydrophobic binding site remains occupied, resulting in lowering of the inhibiti to 30–40%. 相似文献
9.
In Vivo Activation of Kainate Receptors Induces Dephosphorylation of the Heavy Neurofilament Subunit
Injection of kainic acid (KA) into the rat hippocampus reduced the phosphorylation-related immunoreactivity of the heavy subunit of neurofilament proteins (NF-H). The effect was demonstrated quantitatively with a dot-immunobinding assay and qualitatively by immunoblotting with monoclonal antibodies against phosphorylation-dependent and nonphosphorylation-related epitopes of NF-H. The KA-induced reduction affected 50% of the phosphorylated NF-H in half of the hippocampus after 48 h. At the same time, the nonphosphorylation-related NF-H immunoreactivity increased as revealed by immunoblotting, indicating a shift from phosphorylated to nonphosphorylated NF-H. The effects on NF-H preceded a decrease in content of the neuron-specific enolase, a soluble neuronal cytoplasmic protein. No alterations of the light subunit of neurofilament proteins occurred, suggesting that KA has a preferential effect on NF-H phosphorylation. N-Methyl-D-aspartate administered similarly did not lead to a rapid dephosphorylation of NF-H. We propose that kainate receptor-mediated dephosphorylation in NF-H is involved in the signal transduction of excitatory amino acids with consequences for neuronal functions dependent on intermediary filament phosphorylation. 相似文献
10.
Abstract: We have proposed that a very early step in the pathogenesis of idiopathic Parkinson's disease is the elevated translocation of l -cysteine into neuromelanin-pigmented dopaminergic neurons in the substantia nigra. This influx of l -cysteine was proposed to divert the normal neuromelanin pathway by scavenging dopamine-o-quinone, formed by autoxidation of cytoplasmic dopamine, to give initially 5-S-cysteinyldopamine, which is further oxidized to 7 - (2 - aminoethyl) - 3,4 - dihydro - 5 - hydroxy - 2H - 1,4 - benzothiazine-3-carboxylic acid (DHBT-1). In a recent report, it was demonstrated that DHBT-1 evokes inhibition of complex I respiration when incubated with intact rat brain mitochondria and a time-dependent irreversible inhibition of NADH-coenzyme Q1 (CoQ1) reductase when incubated with mitochondrial membranes. In this study, it is established that the time dependence of NADH-CoQ1 reductase inhibition reflects the oxidation of DHBT-1, catalyzed by an unknown constituent of the inner mitochondrial membrane, to an o-quinone imine intermediate that rearranges to 7-(2-aminoethyl) - 5 - hydroxy - 1,4 - benzothiazine - 3 - carboxylic acid (BT-1) and decarboxylates to 7-(2-aminoethyl)-5-hydroxy-1,4-benzothiazine (BT-2), which are further catalytically oxidized to o-quinone imine intermediates. The electrophilic o-quinone imine intermediates formed in these mitochondria-catalyzed oxidations of DHBT-1, BT-1, and BT-2 are proposed to bind covalently to key sulfhydryl residues at the complex I site, thus evoking irreversible inhibition of NADH-CoQ1 reductase. Evidence for this mechanism derives from the fact that greater than equimolar concentrations of glutathione completely block inhibition of NADH-CoQ1 reductase by DHBT-1, BT-1, and BT-2 by scavenging their electrophilic o-quinone imine metabolites to form glutathionyl conjugates. The results of this investigation may provide insights into the irreversible loss of glutathione and decreased mitochondrial complex I activity, which are both anatomically specific to the substantia nigra and exclusive to Parkinson's disease. 相似文献
11.
Abstract: Based on a number of lines of evidence, we have proposed recently that a very early step in the pathogenesis of idiopathic Parkinson's disease might be elevated translocation of l -cysteine into neuromelanin-pigmented dopaminergic cell bodies in the substantia nigra. In vitro studies suggest that such an influx of l -cysteine would divert the neuromelanin pathway by scavenging dopamine-o-quinone, the proximate autoxidation product of dopamine, to give 5-S-cysteinyldopamine, which is oxidized further to 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1) and other cysteinyldopamines and dihydrobenzothiazines. In this study, it is demonstrated that DHBT-1 inhibits ADP-stimulated oxidation of malate and pyruvate (state 3 or complex I respiration) when incubated with intact rat brain mitochondria with an IC50 of ~0.80 mM. Incubation of DHBT-1 with freeze-thawed rat brain mitochondria in both the presence and absence of KCN and/or NADH causes an irreversible, time-dependent decrease of NADH-coenzyme Q1 reductase activity. Significantly lower concentrations of DHBT-1 are necessary to cause this effect when mitochondrial membranes are incubated in the absence of KCN and NADH. The irreversible inhibition of mitochondrial complex I caused by DHBT-1 under the latter conditions could be blocked only partially by glutathione, ascorbic acid, superoxide dismutase, or catalase. Together, these results suggest that DHBT-1 can cross the outer mitochondrial membrane and irreversibly inhibit complex I by a mechanism that is not primarily related to oxygen radical-mediated damage. Formation of DHBT-1 requires only dopamine, l -cysteine, and an oxidizing environment, conditions that may well exist in the cytoplasm of neuromelanin-pigmented dopaminergic neurons in the parkinsonian substantia nigra. The results of this study raise the possibility that DHBT-1 might be an endotoxin formed specifically in pigmented dopaminergic neurons that can contribute to irreversible damage to mitochondrial complex I and substantia nigra cell death in Parkinson's disease. 相似文献
12.
Effect of Dopamine, Dimethoxyphenylethylamine, Papaverine, and Related Compounds on Mitochondrial Respiration and Complex I Activity 总被引:4,自引:1,他引:4
Nami Morikawa Yuko Nakagawa-Hattori Yoshikuni Mizuno 《Journal of neurochemistry》1996,66(3):1174-1181
Abstract: We report the effect of papaverine, tetrahydropapaverine, laudanosine, dimethoxyphenylethylamine, dopamine, and its metabolites on mitochondrial respiration and activities of the enzymes in the electron transfer complexes, as mitochondrial toxins may be implicated in the etiology and the pathogenesis of Parkinson's disease. Papaverine was the most potent inhibitor of complex I and NADH-linked mitochondrial respiration among the compounds tested next to rotenone. Tetrahydropapaverine, dimethoxyphenylethylamine, and laudanosine also inhibited NADH-linked mitochondrial respiration and complex I activity in this order. Dopamine and its metabolites showed either no inhibition or only very weak inhibition. Compounds with dimethoxy residues in the phenyl ring were associated with more potent inhibition of complex I than those without. Our results warrant further studies on these and some related compounds as candidate neurotoxins causing Parkinson's disease. 相似文献
13.
Potentiation by the Tetraphenylboron Anion of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and Its Pyridinium Metabolite 总被引:1,自引:1,他引:1
Richard E. Heikkila John Hwang Senyo Ofori Herbert M. Geller William J. Nicklas 《Journal of neurochemistry》1990,54(3):743-750
The 1-methyl-4-phenylpyridinium species (MPP+) is the four-electron oxidation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is widely assumed to be the actual neurotoxic species responsible for the MPTP-induced destruction of dopaminergic neurons. MPTP is oxidized by the enzyme monoamine oxidase-B to a dihydropyridinium intermediate which is oxidized further to MPP+, an effective inhibitor of the oxidation of the Complex I substrates glutamate/malate in isolated mitochondrial preparations. In the present study, the tetraphenylboron anion (TPB) greatly potentiated the inhibitory effects of MPP+ and other selected pyridinium species on glutamate/malate respiration in isolated mouse liver mitochondria. At 10 microM TPB, the potentiation ranged from approximately 50-fold to greater than 1,000-fold for the several pyridinium species tested. In other experiments, TPB greatly enhanced the accumulation of [3H]MPP+ by isolated mitochondrial preparations. This facilitation by TPB of MPP+ accumulation into mitochondria explains, at least in part, the potentiation by TPB of the above-mentioned inhibition of mitochondrial respiration. Moreover, TPB addition increased the amount of lactate formed during the incubation of mouse neostriatal tissue slices with MPTP and other tetrahydropyridines. The administration of TPB also potentiated the dopaminergic neurotoxicity of MPTP in male Swiss-Webster mice. All of these observations, taken together, are consistent with the premise that the inhibitory effect of MPP+ on mitochondrial respiration within dopaminergic neurons is the ultimate mechanism to explain MPTP-induced neurotoxicity. 相似文献
14.
Beatriz Pardo María Angeles Mena Justo García de Yébenes 《Journal of neurochemistry》1995,64(2):576-582
Abstract: l -3,4-Dihydroxyphenylalanine ( l -DOPA) is toxic for human neuroblastoma cells NB69 and its toxicity is related to several mechanisms including quinone formation and enhanced production of free radicals related to the metabolism of dopamine via monoamine oxidase type B. We studied the effect of l -DOPA on activities of enzyme complexes in the electron transport chain (ETC) in homogenate preparations from the human neuroblastoma cell line NB69. As a preliminary step we compared the activity of ETC in cellular homogenates with that of purified mitochondria from NB69 cells and rat brain. Specific activities for complex I, complex II–III, and complex IV in NB69 cells were, respectively, 65, 96, and 32% of those in brain mitochondria. Complex I activity was inhibited in a dose-dependent way by 1-methyl-4-phenylpyridinium ion with an EC50 of ∼150 µ M . Treatment with 0.25 m M l -DOPA for 5 days reduces complex IV activity to 74% of control values but does not change either complex I or citrate synthase. Ascorbic acid (1 m M ), which protects NB69 cells from l -DOPA-induced neurotoxicity, increases complex IV activity to 133% of the control and does not change other ETC complexes. Ascorbic acid also reverses l -DOPA-induced reduction of complex IV activity in NB69 cells. This observation might indicate that the protection observed with ascorbic acid is related to complex IV activation. In vitro incubation with l -DOPA (0.125–4 m M ) for 2 min produced a dose-dependent reduction of complex IV without change in complex I and II–III activities. 相似文献
15.
Rona R. Ramsay Matthew J. Krueger Stephen K. Youngster Martin R. Gluck John E. Casida† Thomas P. Singer 《Journal of neurochemistry》1991,56(4):1184-1190
Nigrostriatal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease results from the inhibition of mitochondrial respiration by 1-methyl-4-phenylpyridinium (MPP+). MPP+ blocks electron flow from NADH dehydrogenase to coenzyme Q at or near the same site as do rotenone and piericidin and protects against binding of and loss of activity due to these inhibitors. The 4'-analogs of MPP+ showed increasing affinity for the site with increasing length of alkyl chain, with the lowest Ki, for 4'-heptyl-MPP+, being 6 microM. The 4'-analogs compete with rotenone for the binding site in a concentration-dependent manner. They protect the activity of the enzyme from inhibition by piericidin in parallel to preventing its binding, indicating that the analogs and piericidin bind at the same inhibitory site(s). The optimum protection, however, was afforded by 4'-propyl-MPP+. The lesser protection by the more lipophilic MPP+ analogs with longer alkyl chains may involve a different orientation in the hydrophobic cleft, allowing rotenone and piericidin to still bind even when the pyridinium cation is in a position to interrupt electron flow from NADH to coenzyme Q. 相似文献
16.
Ben A. Bahr Vitaly Vodyanoy Randy A. Hall Vishnu Suppiramaniam Markus Kessler Katumi Sumikawa Gary Lynch 《Journal of neurochemistry》1992,59(5):1979-1982
Glutamate receptors belonging to the subclass specifically activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) were solubilized from rat forebrain membranes with Triton X-100 and partially purified through a series of three chromatographic steps. Specific [3H]AMPA binding increased 30-60-fold during the isolation procedure. A protein band recognized by antibodies against specific amino acid sequences of the glutamate receptor-A subunit was enriched with each purification step; the molecular mass of this band (105 kDa) corresponded to that of cloned AMPA receptor subunits. Photoaffinity labeling of forebrain membranes with 6-cyano-7-[3H]nitroquinoxaline-2,3-dione, a specific antagonist of the AMPA receptor, labeled a single band that comigrated with the immunolabeled protein. On reconstitution of the partially purified material into bilayer patches, single-channel current fluctuations were elicited by 300 nM AMPA and blocked by 1 microM 6,7-dinitroquinoxaline-2,3-dione. 相似文献
17.
[3 H]GBR-12935 Binding to the Dopamine Transporter Is Decreased in the Caudate Nucleus in Parkinson''s Disease 总被引:1,自引:0,他引:1
Aaron Janowsky Frank Vocci Paul Berger Itzchak Angel Nethanel Zelnik Joel E. Kleinman Phil Skolnick Steven M. Paul 《Journal of neurochemistry》1987,49(2):617-621
The specific binding of [3H]GBR-12935 to membranes prepared from human caudate nucleus is saturable (Bmax 1.36 +/- 0.18 pmol/mg protein), sodium dependent and of high affinity (KD 2.34 +/- 0.18 nM). Freezing of tissue from rat brain, or refrigeration followed by freezing, results in a small but significant (less than or equal to 20%) decrease in specific [3H]GBR-12935 binding when compared to the binding observed in fresh (nonfrozen) tissue, and this decrease may account, in part, for the differences in specific binding between rat and human brain membranes. Despite small differences in binding site density between fresh and frozen tissue there is a good correlation (r = 0.98; p less than 0.01) between the potencies of a series of drugs in displacing specific [3H]GBR-12935 binding to human caudate membranes and rat striatum as well as in inhibiting dopamine uptake in rat striatal synaptosomes (r = 0.96; p less than 0.01). The specific binding of [3H]GBR-12935 to membranes prepared from the caudate nuclei of patients with Parkinson's disease is decreased compared to membranes prepared from age- and sex-matched controls. These data suggest that [3H]GBR-12935 binds in a sodium-dependent fashion to the dopamine transport complex in human brain and that specific binding is decreased by a pathological degeneration of dopaminergic neurons to the caudate nucleus. 相似文献
18.
Peter H. Andersen 《Journal of neurochemistry》1987,48(6):1887-1896
Abstract: Binding of the selective dopamine (DA) uptake inhibitor [3H]GBR 12935 to rat striatal membranes was characterized biochemically and pharmacologically. [3H]-GBR 12935 binding at 0°C was reversible and saturable and Scatchard analysis indicated a single binding site with a KD of 5.5 nM and a Bmax of 760 pmol/mg tissue. [3H]GBR 12935 labeled two binding sites. One binding site was identified as the classic DA uptake site, since methylphenidate, cocaine, diclofensine, and Lu 19–005 potently inhibited [3H]GBR 12935 binding to it. Binding to the second site was inhibited by high concentrations of the above compounds. IC50 values for inhibition of [3H]GBR 12935 binding to the DA uptake site were proportional to IC50 values for inhibition of DA uptake. However, substrates of DA uptake, e.g., DA and 1-methyl-4-phenylpyridine, and DA releasers, e.g., the amphetamines, inhibited [3H]GBR 12935 binding less than DA uptake. Rate experiments excluded the possibility that these “weak” inhibitors affected the binding by alloste-ric coupled binding sites. The second binding site was not a noradrenergic, serotonergic, or GABAergic uptake site. Neither was it a dopaminergic, acetylcholinergic, histaminic, serotonergic, or adrenergic receptor. However, [3H]GBR 12935 was potently displaced from it by disubstituted piper-azine derivatives, i.e., flupentixol and piflutixol. DA uptake and the DA uptake binding site of [3H]GBR 12935 were located primarily in the striatum, but the piperazine acceptor site was distributed uniformly throughout the brain. Also only the DA uptake binding site was destroyed by 6-OH-DA. Thus, [3H]GBR 12935 labels the classic DA uptake site in rat striatum and also a piperazine acceptor site. Substrates for DA uptake and releasers of DA inhibited [3H]GBR 12935 binding with low potency, but did not alter the rate constants for [3H]GBR 12935 binding. Therefore inhibitors of DA uptake label the carrier site and prevent the carrier process. 相似文献
19.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole. 相似文献
20.
Altered glial function in the substantia nigra in Parkinson's disease may lead to the release of toxic substances that cause dopaminergic cell death or increase neuronal vulnerability to neurotoxins. To investigate this concept, we examined the effects of subjecting astrocytes to lipopolysaccharide (LPS)-induced activation alone or combined with L-buthionine-[S,R]-sulfoximine-induced glutathione depletion or inhibition of complex I activity by 1-methyl-4-phenylpyridinium (MPP+) on the viability of primary ventral mesencephalic neurones or susceptibility to MPP+ and 6-hydroxydopamine (6-OHDA) in co-cultures. LPS-activated astrocytes caused neuronal death in a time-dependent manner, but glutathione-depleted or complex I-inhibited astrocytes had no effect on neuronal viability. The neurotoxicity of LPS-activated astrocytes was inhibited by the inducible nitric oxide synthase inhibitor aminoguanidine, by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and by reduced glutathione (GSH). MPP+-induced neuronal death was greater in ventral mesencephalic cultures previously cultured with LPS-activated, glutathione-depleted, or complex I-inhibited astrocytes compared with co-cultures containing normal astrocytes. The increased neuronal susceptibility to MPP+ caused by LPS-activated or complex I-inhibited astrocytes and glutathione-depleted astrocytes was inhibited by the NMDA/glutamate antagonist MK-801 and by GSH, respectively. Neuronal death caused by 6-OHDA was increased in ventral mesencephalic cultures previously cultured with LPS-activated and glutathione-depleted, but not complex I-inhibited astrocytes, compared with co-cultures containing normal astrocytes. Treatment of co-cultures with GSH prevented the increased neuronal susceptibility to 6-OHDA. These findings suggest that glial dysfunction may cause neuronal death or render neurones susceptible to toxic insults via a mechanism involving the release of free radicals and glutamate. Such a mechanism may play a role in the development or progression of nigrostriatal degeneration in Parkinson's disease. 相似文献