首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A molecular survey technique was used to investigate the diversity of terrestrial tardigrades from three sites within Scotland. Ribosomal small subunit sequence was used to classify specimens into molecular operational taxonomic units (MOTU). Most MOTU were identified to the generic level using digital voucher photography. Thirty-two MOTU were defined, a surprising abundance given that the documented British fauna is 68 species. Some tardigrade MOTU were shared between the two rural collection sites, but no MOTU were found in both urban and rural sites, which conflicts with models of ubiquity of meiofaunal taxa. The patterns of relatedness of MOTU were particularly intriguing, with some forming clades with low levels of divergence, suggestive of taxon flocks. Some morphological taxa contained well-separated MOTU, perhaps indicating the existence of cryptic taxa. DNA sequence-based MOTU proved to be a revealing method for meiofaunal diversity studies.  相似文献   

2.
DNA barcodes are increasingly used to provide an estimate of biodiversity for small, cryptic organisms like nematodes. Nucleotide sequences generated by the barcoding process are often grouped, based on similarity, into molecular operational taxonomic units (MOTUs). In order to get a better understanding of the taxonomic resolution of a 3' 592-bp 18S rDNA barcode, we have analyzed 100 MOTUs generated from 214 specimens in the nematode suborder Criconematina. Previous research has demonstrated that the primer set for this barcode reliably amplifies all nematodes in the Phylum Nematoda. Included among the Criconematina specimens were 25 morphologically described species representing 12 genera. Using the most stringent definition of MOTU membership, where a single nucleotide difference is sufficient for the creation of a new MOTU, it was found that an MOTU can represent a subgroup of a species (e.g. Discocriconemella limitanea), a single species (Bakernema inaequale), or a species complex (MOTU 76). A maximum likelihood phylogenetic analysis of the MOTU dataset generated four major clades that were further analyzed by character-based barcode analysis. Fourteen of the 25 morphologically identified species had at least one putative diagnostic nucleotide identified by this character-based approach. These diagnostic nucleotides could be useful in biodiversity assessments when ambiguous results are encountered in database searches that use a distance-based metric for nucleotide sequence comparisons. Information and images regarding specimens examined during this study are available online.  相似文献   

3.
Identification of ichthyoplankton is difficult because fish during early life stages often lack stable morphological characteristics; such difficulty in species identification can be a major hindrance in conducting ichthyoplankton surveys for fish biodiversity investigations. Here, we evaluated the feasibility of a molecular operational taxonomic unit (MOTU) approach for ichthyoplankton investigations, and describe fish biodiversity in the Jinshajiang section of the upper Yangtze River, China. The MOTUs were established by grouping specimens diverging less than 1.00% Kimura two‐parameter (K2P) distance units from their nearest neighbor within the same MOTU, based on previous work on between‐species divergences of the mitochondrial cytochrome C oxidase subunit I (COI) gene. Taxonomic assignment of the MOTUs was performed by comparing the MOTU sequences with the COI sequences of taxonomic species. Sixty‐eight MOTUs were inferred from 818 COI sequences of ichthyoplankton in the Jinshajiang river section. Among those, one MOTU was composed of two identified taxonomic species, and each of the other MOTUs was linked to a single, identified taxonomic species. Only 26 MOTUs were successfully identified to taxonomic species due to the limited reference database. Our results demonstrate that the MOTU approach can be applied successfully for analyzing biodiversity and identifying species of freshwater ichthyoplankton. Compared with previous ichthyoplankton investigations the richness of ichthyoplankton was very high. High diversity of ichthyoplankton noted in our study suggests that the Jinshajiang section should be an important target for fish biodiversity conservation in the Yangtze River.  相似文献   

4.
Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.  相似文献   

5.
We have developed a molecular barcode system that uses the small subunit ribosomal RNA (SSU) sequence to define molecular operational taxonomic units (MOTU) of soil nematodes. Here we attempt to differentiate five cultured isolates of a taxonomically difficult genus, Panagrolaimus, using morphological, molecular, and biological (breeding) criteria. The results indicated that the five culture populations belonged to two reproductively isolated species. The available morphological criteria, including scanning electron microscopy (SEM), were insufficient to differentiate among them, and all five could be classified as one morphospecies. Within-culture variation of the morphometrical data did not discern between the two biological species. Sequence data clearly separated the populations into two groups that supported the breeding results. Given this study represented only five populations of one genus, we suggest a congruence of MOTU analysis with the biological species concept. This multifaceted approach is promising for future identification of nematodes as it is simple, comparable, and transferable.  相似文献   

6.
The promise of a DNA taxonomy   总被引:23,自引:0,他引:23  
Not only is the number of described species a very small proportion of the estimated extant number of taxa, but it also appears that all concepts of the extent and boundaries of 'species' fail in many cases. Using conserved molecular sequences it is possible to define and diagnose molecular operational taxonomic units (MOTU) that have a similar extent to traditional 'species'. Use of a MOTU system not only allows the rapid and effective identification of most taxa, including those not encountered before, but also allows investigation of the evolution of patterns of diversity. A MOTU approach is not without problems, particularly in the area of deciding what level of molecular difference defines a biologically relevant taxon, but has many benefits. Molecular data are extremely well suited to re-analysis and meta-analysis, and data from multiple independent studies can be readily collated and investigated by using new parameters and assumptions. Previous molecular taxonomic efforts have focused narrowly. Advances in high-throughput sequencing methodologies, however, place the idea of a universal, multi-locus molecular barcoding system in the realm of the possible.  相似文献   

7.
Indigenous communities of soil‐resident nematodes have a high potential for soil health assessment as nematodes are diverse, abundant, trophically heterogeneous and easily extractable from soil. The conserved morphology of nematodes is the main operational reason for their under‐exploitation as soil health indicators, and a user‐friendly biosensor system should preferably be based on nonmorphological traits. More than 80% of the most environmental stress‐sensitive nematode families belong to the orders Mononchida and Dorylaimida. The phylogenetic resolution offered by full‐length small subunit ribosomal DNA (SSU rDNA) sequences within these two orders is highly different. Notwithstanding several discrepancies between morphology and SSU rDNA‐based systematics, Mononchida families (indicated here as M1–M5) are relatively well‐supported and, consequently, family‐specific DNA sequences signatures could be defined. Apart from Nygolaimidae and Longidoridae, the resolution among Dorylaimida families was poor. Therefore, a part of the more variable large subunit rDNA (≈ 1000 bp from the 5′‐end) was sequenced for 72 Dorylaimida species. Sequence analysis revealed a subclade division among Dorylaimida (here defined as D1–D9, PP1–PP3) that shows only distant similarity with ‘classical’ Dorylaimid systematics. Most subclades were trophically homogeneous, and — in most cases — specific morphological characteristics could be pinpointed that support the proposed division. To illustrate the practicability of the proposed molecular framework, we designed primers for the detection of individual subclades within the order Mononchida in a complex DNA background (viz. in terrestrial or freshwater nematode communities) and tested them in quantitative assays (real‐time polymerase chain reaction). Our results constitute proof‐of‐principle for the concept of DNA sequence signatures‐based monitoring of stress sensitive nematode families in environmental samples.  相似文献   

8.
The molecular characterization of the daniconematid dracunculoid Mexiconema cichlasomae Moravec, Vidal, and Salgado-Maldonado, 1992 through the sequencing of SSU rDNA from adult individuals is presented herein. Additionally, preliminary genetic relationships of this nematode are inferred from alignment of sequences generated previously for other dracunculoids. Maximum parsimony and maximum likelihood analyses recovered identical trees. As anticipated by previous taxonomic work, M. cichlasomae is putatively closely related to skrjabillanid dracunculoids represented by Molnaria intestinalis (Dogiel and Bychovsky, 1934) and Skrjabillanus scardinii Molnár, 1966 SSU rDNA sequences, but the relationships of this newly discovered clade to other dracunculoid clades remain unresolved.  相似文献   

9.
Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy by creating gene trees de novo that include all experimental sequences and certain reference taxa, we compare the hypervariable region tags to an extensive database of rRNA sequences and assign taxonomy based on the best match in a Global Alignment for Sequence Taxonomy (GAST) process. The resulting taxonomic census provides information on both composition and diversity of the microbial community. To determine the effectiveness of using only hypervariable region tags for assessing microbial community membership, we compared the taxonomy assigned to the V3 and V6 hypervariable regions with the taxonomy assigned to full-length SSU rRNA sequences isolated from both the human gut and a deep-sea hydrothermal vent. The hypervariable region tags and full-length rRNA sequences provided equivalent taxonomy and measures of relative abundance of microbial communities, even for tags up to 15% divergent from their nearest reference match. The greater sampling depth per dollar afforded by massively parallel pyrosequencing reveals many more members of the “rare biosphere” than does capillary sequencing of the full-length gene. In addition, tag sequencing eliminates cloning bias and the sequences are short enough to be completely sequenced in a single read, maximizing the number of organisms sampled in a run while minimizing chimera formation. This technique allows the cost-effective exploration of changes in microbial community structure, including the rare biosphere, over space and time and can be applied immediately to initiatives, such as the Human Microbiome Project.  相似文献   

10.
Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.  相似文献   

11.
The genus Euduboscquella is one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected with Euduboscquella sampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree of Euduboscquella and syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genus Euduboscquella consistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, in E. cachoni there was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite of Tintinnopsis spp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.  相似文献   

12.
Human activities impact all ecosystems on Earth, which urges scientists to better understand biodiversity changes across temporal and spatial scales. Environmental DNA (eDNA) metabarcoding is a promising non-invasive method to assess species composition in a wide range of ecosystems. Yet, this method requires the completeness of a reference database, i.e. a list of DNA sequences attached to each species of the regional pool, which is rarely met. As an alternative, molecular operational taxonomic units (MOTUs) can be extracted as clusters of sequences. However, the extent to which the diversity of MOTUs can predict the diversity of species across spatial scales is unknown. Here, we used 196 samples along the Rhone river (France) for which the reference database is complete to assess whether a blind eDNA approach can reliably predict the ground-truth number of species at different spatial scales. Using the 12S rDNA teleo primer, we curated and clustered 60 million sequences into MOTUs using a new assembled bioinformatic pipeline. We show that stringent quality filters were necessary to remove artefact noise, notably MOTUs present in a single PCR replicate, which represented 55% of MOTUs (103). Post-clustering cleaning also removed 19 additional erroneous MOTUs and only discarded one truly present species. We then show that the diversity of retained fish MOTUs accurately predicted the local (α, r = 0.98) and regional (γ) ground-truth species diversity (67 MOTUs versus 63 species), but also the species dissimilarity between samples (β-diversity, r = 0.98). This work paves the way towards extending the use of eDNA metabarcoding in community ecology and biogeography despite major gaps in genetic reference databases.  相似文献   

13.
The bacterial diversity associated with soil nematodes and its relationship with their feeding habits are as yet poorly understood. In the present study the diversity and abundance of bacteria from nematodes and their surrounding soil were analysed and compared. The nematodes were collected from a grassland soil and sorted into bacterial, fungal, plant, predatory and omnivore feeding groups and assigned to taxonomic groups. Total DNA was extracted from the nematodes and partial bacterial 16S rRNA genes were PCR amplified, cloned and sequenced. The abundance and composition of bacterial taxa differed between and within feeding groups. The lowest bacterial diversity was found in the predatory nematodes Prionchulus sp., whereas the highest bacterial diversity was associated with the bacterial-feeding nematode Acrobeles sp. The soil had a more diverse bacterial community than the communities found in the nematode groups. The 16S rRNA gene sequences of bacteria associated with nematodes did not overlap with those detected in soil as determined using the cloning screening approach. However, bacterial sequences identified from nematodes could be detected in the soil with targeted PCR. Our data suggest that the nematodes do not feed on the most abundant bacteria present in soil. Furthermore, several nematodes contained suspected bacterial symbionts and parasites.  相似文献   

14.
Jones M  Ghoorah A  Blaxter M 《PloS one》2011,6(4):e19259

Background

DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU) and for associating these MOTU with known organismal taxonomies.

Results

Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation.

Conclusions

jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.  相似文献   

15.
Free‐living nematodes are ubiquitous and highly abundant in terrestrial and aquatic environments, where they sustain ecosystem functioning by mineralization processes and nutrient cycling. Nevertheless, very little is known about their true diversity and intraspecific population structure. Recent molecular studies on marine nematodes indicated cryptic diversity and strong genetic differentiation of distinct populations, but for freshwater nematode species, analogous studies are lacking. Here, we present the first extensive molecular study exploring cryptic species diversity and genetic population structure of a widespread freshwater nematode morphospecies, Tobrilus gracilis, from nine postglacially formed European lakes. Taxonomic species status of individuals, analysed for fragments of the mitochondrial COI gene and for the large (LSU) and small (SSU) ribosomal subunits, were determined by morphological characteristics. Mitochondrial and nuclear markers strongly supported the existence of three distinct genetic lineages (Tg I–III) within Tobrilus gracilis, suggesting that this morphospecies indeed represents a complex of highly differentiated biological species. High genetic diversity was also observed at the population level. Across the nine lakes, 19 mitochondrial, and seven (LSU) and four (SSU) nuclear haplotypes were determined. A phylogeographical analysis revealed remarkable genetic differentiation even among neighbouring lake populations for one cryptic lineage. Priority and persistent founder effects are possible explanations for the observed population structure in the postglacially colonized lakes, but ask for future studies providing direct estimates of freshwater nematode dispersal rates. Our study suggests therefore that overall diversity of limnetic nematodes has been so far drastically underestimated and challenges the assumed ubiquitous distribution of other, single freshwater nematode morphospecies.  相似文献   

16.
The European small subunit ribosomal RNA database   总被引:14,自引:5,他引:9  
The European database of the Small Subunit (SSU) Ribosomal RNA is a curated database that strives to collect all information about the primary and secondary structure of completely or nearly-completely sequenced rRNAs. Furthermore, the database compiles additional information such as literature references and taxonomic status of the organism the sequence was derived from. The database can be consulted via the WWW at URL http://rrna.uia.ac.be/ssu/. Through the WWW, sequences can be easily selected either one by one, by taxonomic group, or by a combination of both, and can be retrieved in different sequence and alignment formats.  相似文献   

17.
18.
Nematodes form an important component of many benthic marine ecosystems and DNA barcoding approaches could provide an insight into nematode community composition from different environments globally. We have amplified nematode 18S rRNA sequences using standard nematode18S rRNA primers from environmental DNA extracted from intertidal sediment collected from New Jersey coast, USA to test whether the published marine nematode 18S rRNA sequences from GenBank and EMBL databases can effectively assign unknown nematode sequences into genus or species level. Most of the sequenced clones showed some degree of identities with published marine nematode 18S rRNA sequences. However, relatively very few of the sequences could be assigned even to genus level based on sequence assignment rule. In addition, other eukaryotic 18S rRNA sequences were found to be co-amplified with commonly used nematode 18S rRNA primers. We found that the majority of the current nematode 18S rRNA primers will co-amplify other eukaryotes if environmental DNA is the target template. We therefore designed a new set of nematode 18S rRNA primers and evaluated them using environmental DNA in intertidal sediment from the New Jersey coast. In total, 40 clones were screened and subsequently sequenced and all the sequences showed varying degree of identities with published nematode 18S rRNA sequences from GenBank and EMBL databases, and no obvious eukaryotic co-amplicons were detected with new primers. Only 13 out of 40 clones amplified with the new primer set showed 100% identity to published Daptonema and Metachromadora 18S rRNA sequences. The current molecular databases for nematodes are dominated by sequences from NW Europe and need to be more extensively populated with new full length 18S rRNA nematode sequences collected from different biogeographic locations. The new primers developed in this study, in combination with an updated nematode 18S rRNA sequence database, would help us to better investigate and understand the diversity and community composition of free-living marine nematodes based on DNA barcoding approaches during biodiversity or biomonitoring surveys on a global-scale.  相似文献   

19.
PCR-based surveys of microbial communities commonly use regions of the small-subunit ribosomal RNA (SSU rRNA) gene to determine taxonomic membership and estimate total diversity. Here we show that the length of the target amplicon has a significant effect on assessments of microbial richness and community membership. Using operational taxonomic unit (OTU)- and taxonomy-based tools, we compared the V6 hypervariable region of the bacterial SSU rRNA gene of three amplicon libraries of c. 100, 400 and 1000 base pairs (bp) from each of two hydrothermal vent fluid samples. We found that the smallest amplicon libraries contained more unique sequences, higher diversity estimates and a different community structure than the other two libraries from each sample. We hypothesize that a combination of polymerase dissociation, cloning bias and mispriming due to secondary structure accounts for the differences. While this relationship is not linear, it is clear that the smallest amplicon libraries contained more different types of sequences, and accordingly, more diverse members of the community. Because divergent and lower abundant taxa can be more readily detected with smaller amplicons, they may provide better assessments of total community diversity and taxonomic membership than longer amplicons in molecular studies of microbial communities.  相似文献   

20.
The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号