首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the cyanobionts of the greenhouse-grown cycads Cycas circinalis, Ceratozamia mexicana, and Encephalartos villosus was studied. The cyanobiont microcolonies grown in the intercellular space of the cyanobacterial zone of cortical parenchyma in the cycad coralloid roots contained two specific forms of vegetative cells with a reduced cell wall, namely, protoplasts and spheroplasts. The protoplasts and spheroplasts exhibited ultrastructural changes indicating the overproduction of two extracellular substances, one of which resembled the mucilage polysaccharides and the other was proteinous. The substances were likely to be synthesized intracellularly and then be excreted with the aid of surface vesicles or by channels in the cytoplasmic membrane to form, respectively, a slimy extracellular matrix and an additional electron-opaque envelope around the cell. At the late developmental stages, the excretion of these substances was accompanied by degradative changes in the cells, leading eventually to cell death. The physiological role of these specific cell forms and the factors that induce their development and death in the cell populations of cyanobionts are discussed.  相似文献   

2.
The action of the lysoamidase bacteriolytic complex on Staphylococcus aureus VKM B-209P cells has been studied to obtain protoplasts. The cells in the midlogarithmic phase were the most sensitive to lysoamidase action. It led to local destruction of cell wall due to hydrolysis of the peptidoglycan. Protoplast formation occurred in two steps in the presence of 1 M sucrose. First, osmotically fragile spheroplasts were formed. Then, the protoplasts were released from the destructed cell wall. The protoplast yield was about 80%. The protoplasts preserved the intact ultrastructure and were able to synthesize peptidoglycan fibrillae. Mainly the spheroplasts that maintained the cell-wall residues reversed into bacterial forms. The protoplasts had respiratory activity similar to cells. Respiration of cells and protoplasts was stimulated by various substrates. High rates of oxygen consumption were observed with -glycerophosphate and ethanol as substrates.  相似文献   

3.
Summary The time rate of regeneration of the cell wall and reversion of protoplasts of the yeast Nadsonia elongata to cells of normal shape and size has been compared with the capability for regeneration of spheroplasts of this yeast. Nearly all protoplasts in a given culture were able to regenerate new walls and had usually reverted to cells of normal appearance by the 30th h of cultivation. Spheroplasts required only half this time to do this. These results can be interpreted as evidence that regeneration of a wall by protoplasts does not depend upon the presence of a cell wall primer, because the proportion of reverting protoplasts (which lack wall remnants) was the same as that of reverting spheroplasts (which possess them). The presence of wall remnants in spheroplasts appears to have merely an accelerating effect on the formation of a new wall and on subsequent reversion of the spheroplasts to complete cells of normal shape and size.  相似文献   

4.
Summary Vinca rosea protoplasts and Agrobacterium tumefaciens spheroplasts harboring octopine-type Ti plasmid were mixed and treated with polyethylene glycol or polyvinyl alcohol, which facilitated the introduction of spheroplasts into plant protoplasts. After the protoplasts had been kept at 40° C for 4 days, bacteria were found to be completely eliminated from the medium. Among treated protoplasts 1–2 per 1,000 formed colonies on the Murashige and Skoog medium (1962) lacking hormones. When the colonies were isolated and subcultured, they could be maintained as clones. Octopine, an amino acid specific to crown gall, was detected in half of these clones. The phenotypic features of these putative transformants were compared but did not show any coincidental tendencies in relation to color, hardness, form, growth rate, or octopine production. The significance of this system in transformation of higher plant cells is discussed.  相似文献   

5.
N2-fixing cyanobacteria are unique in their capacity to form symbiotic associations with a wide range of eukaryotic hosts belonging to different plant groups. The present study was undertaken to analyze the interactions of the cyanobiont PI 01 (from Azolla pinnata) and Nostoc PCC 9229 (from Gunnera monoika) with wheat seedlings, in co-culturing experiments. Each of the cyanobionts enhanced significantly the volume of root and shoot biomass in the experimental cultures. The transverse sections of roots in the co-cultured seedlings revealed the presence of aseriate packets of cyanobionts below the root epidermis. The investigated cyanobionts excreted amino acids (His, Met, Val) and sugars into the medium, while indoleacetic acid was detected when the cyanobionts were grown in a tryptophan containing medium. During the co-culturing, sugars and proline were detected in the extracellular filtrates. It can be hypothesized that these sugars and amino acids may serve as signal substances in the development of functional associations between the relevant cyanobionts and the wheat seedlings.  相似文献   

6.
K. Harding  E. C. Cocking 《Protoplasma》1986,130(2-3):153-161
Summary E. coli spheroplasts can be used to deliver DNA vectors into plant protoplasts. The use of fluorescent dyes showed that 25–100% of the protoplast population was associated with 1–9 spheroplasts following incubation with several fusogens. Electron microscopy demonstrated spheroplasts attached to protoplasts via a plasma membrane protrusion after high pH/Ca2+ treatment, but PEG-high pH/Ca2+ promoted endocytosis of spheroplasts into a plasma membrane bounded vesicle. Ultrastructural profiles showed that fusion between spheroplasts and protoplasts did not occur. Immunofluorescence studies detectedE. coli antigens associated with tobacco protoplasts, and after fusogen treatment the antigens were dispersed within the peripheral cytoplasm. The elimination of residual contaminatingE. coli cells from protoplasts was achieved by lysozyme and antibiotic treatment, thus allowing DNA vector assessment in axenic culture.  相似文献   

7.
A procedure for protoplasts formation from Escherichia coli and Serratia marcescens by treatment with fosfomycin alone is described. This method gives high and low yields of stable protoplasts from E. coli and S. marcescens respectively. In the last case numerous spheroplasts were obtained. Electron micrographs of intact cells, protoplasts and spheroplasts are shown.  相似文献   

8.
Cyanobacterial symbionts (cyanobionts) have been identified forming associations with various open ocean eukaryotic host genera, including two dinophysoid genera, Histioneis sp. and Ornithocercus sp., two radiolarians, Spongastaurus and Dictyocoryne truncatum, sp., and a tintinnid, Codonella sp. The TEM analysis revealed that single individual hosts were closely associated with one to two different cyanobacterial morphotypes (cyanobionts) and two hosts had in addition to cyanobionts, one to two bacterial cell types. Eleven significantly (P<0.01) different cell types were identified as cyanobionts, with cell diameters ranging 0.5±0.38–3.7±0.66 μm. Using immunogold‐labeling techniques coupled to the TEM, four of the five cell types contained phycoerythrin (PE) at high levels (>71±28 gold particles·μm?2). Immunolabeling‐TEM using nitrogenase antisera demonstrated a significant (P<0.01) nitrogenase content in cell type four cyanobionts of Histioneis sp. host 1 (39±34 gold particles·μm?2). The cyanobionts of the radiolarians were of a cell diameter (0.5–0.8 μm) and showed ultrastructural characters (peripheral thylakoids) reminiscent of Prochlorococcus sp. Also, an open ocean tintinnid, Codonella sp., was shown to contain cyanobacteria as symbionts for the first time. In all cyanobionts, glycogen storage was obvious, no cellular degradation was visible, cells were observed in the process of cellular division, and antisera localization was apparent. These observations suggest that the relationship between host eukaryote and cyanobacteria is an active one, and likely symbiotic.  相似文献   

9.
Preparation and regeneration of protoplasts is essential for somatic hybridization and transformation of yeasts. We present conditions that were found to be optimal for preparing and regeneratingSchizosaccharomyces pombe protoplasts for cell fusion. In contrast to these conditions, genetic transformation ofS. pombe requires spheroplasts that are osmotically sensitive, but still have some wall material attached to the cell. The main finding were as follows: (a) For protoplast formation with Novozym SP234, 0.9M sorbitol was found to be the optimal osmotic milieu and -mercaptoethanol is not necessary. (b) Embedding in soft agar yields considerably better regeneration frequencies than direct plating. (c) Cell fusion is optimal when both fusion partners are fully protoplasted, although considerable fusion occurs between spheroplasted cells as well. (d)Schizosaccharomyces pombe transformation frequencies are much higher with spheroplasts than with protoplasts. Inclusion of -mercaptoethanol did not enhance transformation frequency.  相似文献   

10.
Summary Saishin (Brassica chinensis L.) mesophyll protoplasts and E. coli spheroplasts harbouring hybrid plasmid with tandemly dimerized cauliflower mosaic virus DNA were mixed in ratios of 1:1,000 and incubated for 20 min at 30° C in the presence of 20% polyvinyl alcohol. Subsequently, protoplasts/spheroplasts mixture was washed with high pH-high Ca buffer. After 3 days of culture, 8% of Saishin protoplasts were transfected as monitored by immunofluorescence technique. When plant protoplasts and bacterial spheroplasts were mixed in ratios of 1:100 or 1:2,000, 1% or 5% of protoplasts were transfected, respectively.  相似文献   

11.
Summary Interaction of Escherichia coli spheroplasts with Neurospora crassa slime cells was examined by transmission electron microscopy after treatment with polyvinyl alcohol followed by dilution with the high pH-high Ca buffer. Bacterial spheroplasts were found either adhering to the flat surface, associating with the invaginating surface, or residing within the intracellular vesicle of fungal protoplasts. In addition, bacterial spheroplasts free of the surrounding vesicles and those in the course of breakdown were observed in the fungal cytoplasm. It was concluded that Escherichia coli spheroplasts are taken up by Neurospora crassa protoplasts almost exclusively via endocytosis. This is the first cytological evidence for the endocytic activity of fungal cells.  相似文献   

12.
An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.  相似文献   

13.
In the presence of 10% polyvinyl alcohol (PVA), Escherichia coli cells or spheroplasts can be easily introduced into Vinca protoplasts by endocytosis. Uptake proceeded quite rapidly; bacterial cells or spheroplasts were found within the cytoplasm of Vinca protoplasts after 10 min of incubation with PVA.  相似文献   

14.
Differentiation of freshly separated (uncultured) and cultured cyanobionts of Azolla species was carried out employing morphological markers and profiles generated using SDS-PAGE and PCR–RFLP of 16S rRNA. The cell dimensions of vegetative cells, heterocysts and heterocyst frequency (25–28%) of the freshly separated cyanobionts were distinctly higher than that those recorded for the cultured cyanobionts (7–10%). The SDS-PAGE profiles of whole cell proteins of cultured cyanobionts (comprising 28–30 bands) and those of freshly separated cyanobionts (consisting of 6–10 bands) exhibited distinct differences and unique bands. AluI was able to discriminate freshly separated cyanobionts from cultured cyanobionts of same species of Azolla. The profiles of cyanobionts (freshly separated and cultured) of A. rubra (RU6503) generated using the restriction enzyme AluI were distinctly different from other cyanobionts and unique bands were observed in both cyanobionts. The cultured cyanobionts from A. microphylla (MI4018), A. filiculoides (FI1001) and A. pinnata (PP7001) showed the presence of a distinct band of 450, 622 and 307 bp, respectively. Three common bands of 500, 400 and 275 bp were recorded in the AluI restriction profiles of all the freshly separated cyanobionts. 16S rRNA PCR–RFLP analyses confirmed the existence of primary and secondary cyanobionts in the leaf cavities of different Azolla species. These techniques can be utilized for discriminating between freshly separated and cultured cyanobionts of Azolla and provide reliable fingerprints for these strains.  相似文献   

15.
The prasinophyte genera Scherffelia and Tetraselmis are the only genera that form a cell wall by an extracellular fusion of scales called a theca. We established a protocol for the production of protoplasts from Scherffelia dubia Pascher emend. Melkonian et Preisig using 3 mM Ellman's reagent (5,5′‐dithio‐bis‐2‐nitrobenozoic acid [DTNB]). Protoplasts analyzed by EM lacked flagella and thecae but were otherwise similar to control cells. In response to treatment with DTNB, many protoplasts synthesized new thecal scales in the Golgi apparatus, indicating that cells attempted to regenerate new cell walls. However, complete regeneration of the thecae only occurred once DTNB was washed out from the medium. At higher DTNB concentrations (5 mM), two protoplasts were found within the parental cell wall and scales accumulated between the plasma membrane of the protoplasts and the original theca but failed to form a new theca.  相似文献   

16.
Summary Membrane units from lysed spheroplasts induced by lysozyme or glycine from Mycobacterium spec. smegmatis were isolated in a biological active state by differential centrifugation and by density gradient technique. They were compared morphologically with membraneous fractions obtained from mycobacterial cells disintegrated under a high hydrostatic pressure.Higher homogeneity of membraneous structures isolated from spheroplasts was confirmed. Three types of membraneous structures could be distinguished. They include empty ghosts of spheroplasts, tubular structures containing cytoplasmic material and fragments of typical membraneous structures relatively free of contaminants. By studying protoplasts in the process of lysis it was determined that these structures correspond with cytoplasmic membranes and mesosomes.Differences between lysozome and glycine induced spheroplasts as a starting material for isolation of membraneous structures include the proportion of contamination by other cellular components, reasons of which are discussed.  相似文献   

17.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

18.
Summary An attempt was made to transfer the T-DNA of Agrobacterium tumefaciens, previously introduced into plant cells, via protoplast fusion from one species into another. For the experiments two cell lines were used: firstly, a Nicotiana paniculata cell line transformed with the Agrobacterium strain B6S3. This cell line exhibits both hormone independent growth and synthesis of octopine as a result of the incorporated T-DNA from Agrobacterium. These two markers are dominant. The second cell line was the nitrate reductase deficient cnx-68 cell line of N. tabacum which contains an intracellular calcium oxalate druse. These two markers are recessive. Isolated protoplasts of the donor cell line N. paniculata B6S3 were mitotically inactivated by X rays and fused with protoplasts of the cell line cnx-68. Asymmetric somatic hybrids were selected on hormone free agar medium supplemented with 50 mM KClO3. This compound is toxic for cells possessing nitrate reductase activity. From about 1.1×107 cultivated protoplasts 18 cell lines survived the selection treatment. Of these seven exhibited the two dominant and the two recessive markers, whereas the others showed either only one or none of the recessive or only one of the dominant markers. In dot-blot experiments using species specific DNA clones of the donor and the recipient plant species it was confirmed that besides the T-DNA other nuclear genomic DNA of the donor species had also been transferred in various amounts. The possible consequences of these results for plant breeding programmes are discussed.  相似文献   

19.
The ultrastructure of the heteromorphic cells (HMCs) of the cyanobacterium Nostoc muscorumCALU 304 grown in pure culture, monoculture, and a mixed culture with the Rauwolfiacallus tissue was studied. The comparative analysis of the cell surface of HMCs, the frequency of the generation of cell forms with defective cell walls (DCWFs), including protoplasts and spheroplasts, and the peculiarities of their ultrastructure under different growth conditions showed that, in the early terms of mixed incubation, the callus tissue acts to preserve the existing cyanobacterial DCWFs, but begins to promote their formation in the later incubation terms. DCWFs exhibited an integrity of their protoplasm and were metabolically active. It is suggested that structural alterations in the rigid layer of the cell wall may be due to the activation of the murolytic enzymes of cyanobacteria and the profound rearrangement of their peptidoglycan metabolism caused by the Rauwolfiametabolites diffused through the medium. These metabolites may also interfere with the functioning of the universal cell division protein of bacteria, FtsZ. In general, the Rauwolfiacallus tissue promoted the unbalanced growth of the cyanobacterium N. muscorumCALU 304 and favored its viability in the mixed culture. The long-term mixed cultivation substantially augmented the probability of the formation of L-forms of N. muscorumCALU 304.  相似文献   

20.
The biochemistry of cell-wall regeneration in protoplasts obtained from Vinca rosea L. (Catharanthus roseus (L.) G. Don) cells grown in suspension culture by isolating the regenerated wall and the extracellular polysaccharides of protoplasts cultured for various periods, and investigating their composition. Gas-liquid chromatography and tracer studies with D-[U-14C]glucose showed that the sugar composition of the extracellular polysaccharides was similar to that of the original cell culture, consisting mainly of polyuronide and 3,6-linked arabinogalactan. the regenerated cell wall was composed of non-cellulosic glucans having 1,3- and 1,4-linkages, while its content in pectic and hemicellulosic components was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号