首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

2.
For the full activation of cyclin‐dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK‐activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate‐type CAKs, three CDKDs (CDKD;1CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post‐embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1‐1 cdkd;3‐1 pollen grains were defective in pollen mitosis I and II, producing one‐cell or two‐cell pollen grains that lacked fertilization ability. We also found that the double knock‐out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post‐embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1‐1 cdkd;3‐1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post‐embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.  相似文献   

3.
2,4‐Dichlorophenoxyacetic acid (2,4‐D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole‐3‐acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4‐D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4‐D‐specific mutants suggested that 2,4‐D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4‐D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4‐D but not IAA altered the actin structure in long‐term and short‐term assays. Analysis of the 2,4‐D‐specific mutant aar1‐1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4‐D‐induced depolymerization of actin. The ubiquitin proteasome mutants tir1‐1 and axr1‐12, which show enhanced resistance to 2,4‐D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4‐D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4‐D on the organization of actin filaments. Roots of the double mutant aar1‐1 tir1‐1 also showed enhanced resistance to 2,4‐D‐induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4‐D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.  相似文献   

4.
As the start of a new life cycle, activation of the first division of the zygote is a critical event in both plants and animals. Because the zygote in plants is difficult to access, our understanding of how this process is achieved remains poor. Here we report genetic and cell biological analyses of the zygote‐arrest 1 (zyg1) mutant in Arabidopsis, which showed zygote‐lethal and over‐accumulation of cyclin B1 D‐box‐GUS in ovules. Map‐based cloning showed that ZYG1 encodes the anaphase‐promoting complex/cyclosome (APC/C) subunit 11 (APC11). Live‐cell imaging studies showed that APC11 is expressed in both egg and sperm cells, in zygotes and during early embryogenesis. Using a GFP‐APC11 fusion construct that fully complements zyg1, we showed that GFP‐APC11 expression persisted throughout the mitotic cell cycle, and localized to cell plates during cytokinesis. Expression of non‐degradable cyclin B1 in the zygote, or mutations of either APC1 or APC4, also led to a zyg1‐like phenotype. Biochemical studies showed that APC11 has self‐ubiquitination activity and is able to ubiquitinate cyclin B1 and promote degradation of cyclin B1. These results together suggest that APC/C‐mediated degradation of cyclin B1 in Arabidopsis is critical for initiating the first division of the zygote.  相似文献   

5.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

6.
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.  相似文献   

7.
Plasmodiophora brassicae is a soil‐borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A‐ and B‐type cyclin expression. These factors were previously described as important regulators of the G2?M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.  相似文献   

8.
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2‐fucosyl residues to xyloglucan side chains – a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X‐ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X‐ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water‐mediated fucosylation mechanism facilitated by an H‐bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.  相似文献   

9.
Low temperature is an environmental factor that affects plant growth and development and plant–pathogen interactions. How temperature regulates plant defense responses is not well understood. In this study, we characterized chilling‐sensitive mutant 1 (chs1), and functionally analyzed the role of the CHS1 gene in plant responses to chilling stress. The chs1 mutant displayed a chilling‐sensitive phenotype, and also displayed defense‐associated phenotypes, including extensive cell death, the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR genes: these phenotypes indicated that the mutation in chs1 activates the defense responses under chilling stress. A map‐based cloning analysis revealed that CHS1 encodes a TIR‐NB‐type protein. The chilling sensitivity of chs1 was fully rescued by pad4 and eds1, but not by ndr1. The overexpression of the TIR and NB domains can suppress the chs1–conferred phenotypes. Interestingly, the stability of the CHS1 protein was positively regulated by low temperatures independently of the 26S proteasome pathway. This study revealed the role of a TIR‐NB‐type gene in plant growth and cell death under chilling stress, and suggests that temperature modulates the stability of the TIR‐NB protein in Arabidopsis.  相似文献   

10.
11.
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix‐loop‐helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME‐INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1‐mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA‐mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants.  相似文献   

12.
The catalytic activity of mitogen‐activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live‐cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss‐of‐function double‐mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl‐induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22‐induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells.  相似文献   

13.
14.
15.
A family of six genes encoding acyl‐CoA‐binding proteins (ACBPs), ACBP1–ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1‐over‐expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over‐production in 12‐day‐old seedlings up‐regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress‐responsive genes: ABA‐RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH‐TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12‐day‐old seedlings of ACBP1‐over‐expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two‐hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA‐mediated seed germination and seedling development.  相似文献   

16.
17.
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production.  相似文献   

18.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

19.
20.
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号