首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金城 《微生物学通报》2014,41(7):1470-1470
<正>放线菌基因组测序显示基因组中平均有超过20个以上的次生代谢生物合成基因簇,但通常放线菌在试验条件下能检测到的产物仅有2-3个,因此这些次生代谢生物合成基因簇引起了研究者的极大关注,期望通过基因组的挖掘来发现新的代谢产物。除虫链霉菌(Streptomyces avermitilis)产生的16元大环内酯化合物阿维菌素及衍生物被广泛用于防治动植物的线虫类和节肢动物类害虫[1-2]。除虫链霉菌的基因组中,除了阿维菌素生物合成基因簇外,还有其它11种聚酮合成酶类(Polyketide synthesase,PKS)抗生素生物合成基因簇[3]。由于聚酮化合物生物合  相似文献   

2.
3.
Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochrome P450 (CYP) mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNA interference double knock-down of this pair of closely related CYPs reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which was ultimately achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al, and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al, and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene-derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis.  相似文献   

4.
5.
合成生物学和基因组测序技术的快速发展使挖掘和高效合成天然产物进入了一个全新的时代。由于多数原始菌株生长缓慢、难以培养及遗传改造困难等问题,导致天然产物生物合成基因簇的激活和高效表达受到严重制约。基于此,将原始菌株来源的基因簇转移到操作简便、遗传背景清晰的模式宿主中进行异源表达成为天然产物发现和产量提高的一种有效手段。其中,基因簇的克隆与编辑是实现天然产物异源表达的一个主要限速步骤。CRISPR/Cas技术的应用极大地提高了大型基因簇克隆和编辑的效率,有效促进了微生物来源新药的发现。本文针对基于CRISPR/Cas开发的基因簇克隆和编辑技术进行了系统梳理和全面总结,探讨相关技术在天然产物挖掘和高效合成中的应用及其重要意义。  相似文献   

6.
侯路宽  李花月  李文利 《微生物学报》2017,57(11):1722-1734
传统的"活性-化合物"天然药物发现方法导致大量已知化合物被重复分离,大大加剧了新药发现的难度。规模化基因组测序揭示了微生物基因组中存在大量的隐性(cryptic)次级代谢产物生物合成基因簇,如何激活这些隐性基因簇成为当今世界天然产物研究领域的难点与热点。本文从途径特异性和多效性两个角度综述了隐性生物合成基因簇激活策略;同时,对基因组信息指导下结构导向(structure-guided)的化合物定向分离技术进行了归纳。隐性基因簇的激活为定向发掘具有优良活性的新型天然产物提供了新的契机。  相似文献   

7.
8.
9.
AIMS: To compare the biosynthetic gene cluster sequences of the main aflatoxin (AF)-producing Aspergillus species. METHODS AND RESULTS: Sequencing was on fosmid clones selected by homology to Aspergillus parasiticus sequence. Alignments revealed that gene order is conserved among AF gene clusters of Aspergillus nomius, A. parasiticus, two sclerotial morphotypes of Aspergillus flavus, and an unnamed Aspergillus sp. Phylogenetic relationships were established using the maximum likelihood method implemented in PAUP. Based on the Eurotiomycete/Sordariomycete divergence time, the A. flavus-type cluster has been maintained for at least 25 million years. Such conservation of the genes and gene order reflects strong selective constraints on rearrangement. Phylogenetic comparison of individual genes in the cluster indicated that ver-1, which has homology to a melanin biosynthesis gene, experienced selective forces distinct from the other pathway genes. Sequences upstream of the polyketide synthase-encoding gene vary among the species, but a four-gene sugar utilization cluster at the distal end is conserved, indicating a functional relationship between the two adjacent clusters. CONCLUSIONS: The high conservation of cluster components needed for AF production suggests there is an adaptive value for AFs in character-shaping niches important to those taxa. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first comparison of the complete nucleotide sequences of gene clusters harbouring the AF biosynthesis genes of the main AF-producing species. Such a comparison will aid in understanding how AF biosynthesis is regulated in experimental and natural environments.  相似文献   

10.
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of “unnatural” natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.  相似文献   

11.
【目的】考察除虫链霉菌基因组中其它聚酮合成酶类(Polyketide synthase,PKS)抗生素生物合成基因簇的敲除突变对于阿维菌素产量的影响。【方法】构建了11个PKS基因簇的打靶Cosmid和质粒载体,导入除虫链霉菌中筛选突变株。【结果】在工业菌株MMR630中成功敲除了10个PKS基因簇。发酵结果显示7个PKS基因簇敲除突变株中阿维菌素的产量均有不同程度的提高,而2个突变株不能产生阿维菌素。然而,在3个连续敲除2个PKS基因簇的突变株中阿维菌素产量没有能够超过单个PKS敲除突变株的提升幅度。【结论】除虫链霉菌基因组的一些PKS基因簇的敲除可以提高阿维菌素的产量,同时暗示同一类次生代谢产物的代谢流之间存在复杂的相互作用关系。  相似文献   

12.
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other “phytocassane” BGC. This CYP76M8 acts after the CYP99A2/3 from the “momilactone” BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the “momilactone” BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other “phytocassane” BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.

Investigation of momilactone production in rice demonstrates roles for two unlinked biosynthetic clusters, requiring interdependent evolution and highlighting the distinct nature of their assembly.  相似文献   

13.
Characterization of the rice (Oryza sativa) actin gene family   总被引:11,自引:0,他引:11  
  相似文献   

14.
【背景】卡西霉素(calcimycin)是重要的离子载体抗生素,其生物合成基因簇已从教酒链霉菌NRRL3882的基因组DNA中成功克隆,但基因簇内的部分生物合成基因及调控基因的功能有待研究。【目的】研究卡西霉素产生菌教酒链霉菌NRRL3882中编码TylR家族同源转录调控蛋白的calR1基因的功能。【方法】通过PCR-targeting的方法,构建calR1基因敲除突变株及回补菌株,对突变菌株及回补菌株进行发酵,通过HPLC分析其代谢产物。利用荧光定量PCR检测ΔcalR1突变菌株和野生菌株的生物合成基因转录水平。【结果】calR1基因敲除突变株丧失产生卡西霉素的能力,但仍有中间产物噻唑霉素的积累,回补菌株中卡西霉素的产量有一定程度的恢复。RT-qPCR结果表明,卡西霉素合成相关的一些重要基因calC、calG、calU3等基因的表达量明显改变。【结论】TylR家族转录调控基因calR1是卡西霉素生物合成的调控基因。  相似文献   

15.
Makiuchi T  Annoura T  Hashimoto T  Murata E  Aoki T  Nara T 《Protist》2008,159(3):459-470
A unique feature of the genome architecture in the parasitic trypanosomatid protists is large-scale synteny. We addressed the evolutionary trait of synteny in the eukaryotic group, Euglenozoa, which consists of euglenoids (earliest branching), diplonemids, and kinetoplastids (trypanosomatids and bodonids). Synteny of the pyrimidine biosynthetic (pyr) gene cluster, which constitutes part of a large syntenic cluster in trypanosomatids and includes four separate genes (pyr1-pyr4) and one fused gene (pyr6/pyr5 fusion), was conserved in the bodonid, Parabodo caudatus. In the diplonemid, Diplonema papillatum, we identified pyr4 and pyr6 genes. Phylogenetic analyses of pyr4 and pyr6 showed the separate origin of each in kinetoplastids and euglenoids/diplonemids and suggested that kinetoplastids have acquired these genes via lateral gene transfer (LGT). Because replacement of genes by non-orthologs within the syntenic cluster is highly unlikely, we concluded that, after separation of the line leading to diplonemids, the syntenic pyr gene cluster was established in the common ancestor of kinetoplastids, preceded by their acquisition via LGT. Notably, we found that diplonemid pyr6 is a stand-alone gene, inconsistent with both euglenoid pyr5/pyr6 and kinetoplastid pyr6/pyr5 fusions. Our findings provide insights into the evolutionary gaps within Euglenozoa and the evolutionary trait of rearrangement of gene fusion in this lineage.  相似文献   

16.
17.
18.
多烯大环内酯类抗生素具有良好的抗真菌活性,广泛应用于医疗卫生、食品加工和农业生产领域。随着高通量测序技术和生物信息学技术的发展,越来越多的链霉菌抗生素生物合成基因簇被发现和鉴定,调控因子作为生物合成基因簇中的重要组成部分,在庞大复杂的调控网络中起着至关重要的作用。本文总结了链霉菌中重要的调控因子类型,综述了多烯大环内酯类抗生素生物合成基因簇中调控因子的生物学功能、结合位点、作用机制等研究进展,并展望了后续研究工作。  相似文献   

19.
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1′ position is crucial for inducing activity.  相似文献   

20.
microRNA (miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome. Although a large number of miRNA clusters have been uncovered in animal and plant genomes, the functional consequences of this arrangement are still poorly understood. Located in a polycistron, the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes, including embryonic development, cell cycles and cell differentiation. In this review, based on recent progress, we discuss the genomic diversity of miRNA gene clusters, the coordination of expression and function of the clustered miRNAs, and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events. Supported by State Key Program of National Natural Science of China(Grant No. 306300130)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号