共查询到20条相似文献,搜索用时 15 毫秒
1.
Olga Ilnytska Kimberly Lai Kirill Gorshkov Mark L. Schultz Bruce Nguyen Tran Maciej Jeziorek Thaddeus J. Kunkel Ruth D. Azaria Hayley S. McLoughlin Miriam Waghalter Yang Xu Michael Schlame Nihal Altan-Bonnet Wei Zheng Andrew P. Lieberman Radek Dobrowolski Judith Storch 《The Journal of biological chemistry》2021,297(1)
Niemann–Pick C (NPC) is an autosomal recessive disorder characterized by mutations in the NPC1 or NPC2 genes encoding endolysosomal lipid transport proteins, leading to cholesterol accumulation and autophagy dysfunction. We have previously shown that enrichment of NPC1-deficient cells with the anionic lipid lysobisphosphatidic acid (LBPA; also called bis(monoacylglycerol)phosphate) via treatment with its precursor phosphatidylglycerol (PG) results in a dramatic decrease in cholesterol storage. However, the mechanisms underlying this reduction are unknown. In the present study, we showed using biochemical and imaging approaches in both NPC1-deficient cellular models and an NPC1 mouse model that PG incubation/LBPA enrichment significantly improved the compromised autophagic flux associated with NPC1 disease, providing a route for NPC1-independent endolysosomal cholesterol mobilization. PG/LBPA enrichment specifically enhanced the late stages of autophagy, and effects were mediated by activation of the lysosomal enzyme acid sphingomyelinase. PG incubation also led to robust and specific increases in LBPA species with polyunsaturated acyl chains, potentially increasing the propensity for membrane fusion events, which are critical for late-stage autophagy progression. Finally, we demonstrated that PG/LBPA treatment efficiently cleared cholesterol and toxic protein aggregates in Purkinje neurons of the NPC1I1061T mouse model. Collectively, these findings provide a mechanistic basis supporting cellular LBPA as a potential new target for therapeutic intervention in NPC disease. 相似文献
2.
Bichao Zhang Ciqing Yang Liang Qiao Qiuling Li Congrui Wang Xin Yan Juntang Lin 《Journal of cellular and molecular medicine》2017,21(5):848-859
Niemann–Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1?/?), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1?/? mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c‐Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1?/? mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1?/? spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages. 相似文献
3.
Garver WS Jelinek D Oyarzo JN Flynn J Zuckerman M Krishnan K Chung BH Heidenreich RA 《Journal of cellular biochemistry》2007,101(2):498-516
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease. 相似文献
4.
Melissa R. Pergande Fidel Serna‐Perez Sheher Banu Mohsin Jonathon Hanek Stephanie M. Cologna 《Proteomics》2019,19(18)
Niemann–Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result of the genetic defect, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system causing both visceral and neurological defects. These manifest clinically as hepatosplenomegaly, liver dysfunction, and neurodegeneration. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive these pathologies remains less understood. In this study, it is sought to investigate free fatty acid levels in Npc1?/? mice with focus on the polyunsaturated ω‐3 and ω‐6 fatty acids. Since fatty acids are the main constituents of numerous lipids species, a discovery based lipidomic study of liver tissue in Npc1?/? mice is also performed. To this end, alterations in fatty acid synthesis, including the ω‐3 and 6 fatty acids, are reported. Further, alterations in enzymes that regulate the synthesis of ω‐3 and 6 fatty acids are reported. Analysis of the liver lipidome reveals alterations in both storage and membrane lipids including ceramides, fatty acids, phosphatidylcholamines, phosphatidylglycerols, phosphatidylethanolamines, sphingomyelins, and triacylglycerols in Npc1?/? mice at a late stage of disease. 相似文献
5.
Allergen‐mediated cross‐linking of the high‐affinity receptor for IgE on mast cells triggers the release of diverse preformed and de novo synthesized immunoregulatory mediators that further the allergic response. A proteomic screen applied to the detection of proteins secreted by the model rat mast cell line, RBL‐2H3 (rat basophilic leukaemia, subline 2H3.1), led to the identification of the cholesterol‐binding glycoprotein, NPC2/RE1 (Niemann–Pick Type C2/epididymal secretory protein 1). Glycosylated NPC2 is secreted early in response to an IgE‐mediated stimulus and co‐localizes with the lysosomal membrane marker, CD63. NPC2 belongs to the ML (MD‐2‐related lipid‐recognition) protein family (155 members), which includes the Toll‐like receptor co‐factors, MD‐1 and MD‐2, and perhaps most interestingly, seven major house dust mite allergens of unknown function (including Der p 2 and Der f 2). Possible role(s) for the protein in the allergic response and future applications of this approach are discussed. 相似文献
6.
Magdalena M. Domon Françoise Besson Joanna Bandorowicz-Pikula Slawomir Pikula 《Biochemical and biophysical research communications》2011,(2):192
Niemann–Pick type C (NPC) disease is characterized by excessive accumulation of cholesterol in the late endosome/lysosome compartment. Some members of the annexin family of proteins such as annexin A2 (AnxA2) and annexin A6 (AnxA6) follow the same route as cholesterol during the endocytic pathway and are found, as AnxA6, attached to the membranes of the cholesterol storage compartment in NPC disease fibroblasts. Therefore, the purpose of this work was to test the hypothesis that AnxA6 participates in the NPC-induced changes in the organization of membrane microdomains resistant to solubilization by a nonionic detergent, Triton X-100, i.e., detergent-resistant microdomains (DRMs). Using cellular fractionation, fluorescence microscopy and specific antibodies we observed that in the absence of calcium AnxA6 was found in the DRM-depleted membrane fractions isolated from NPC and control fibroblasts. In the presence of calcium, AnxA6 re-located to the fractions enriched in DRMs only in the NPC cells, suggestive of AnxA6 participation in organization of these microdomains. 相似文献
7.
Cecilia Devlin Nina H. Pipalia Xianghai Liao Edward H. Schuchman Frederick R. Maxfield Ira Tabas 《Traffic (Copenhagen, Denmark)》2010,11(5):601-615
Different primary lysosomal trafficking defects lead to common alterations in lipid trafficking, suggesting cooperative interactions among lysosomal lipids. However, cellular analysis of the functional consequences of this phenomenon is lacking. As a test case, we studied cells with defective Niemann‐Pick C1 (NPC1) protein, a cholesterol trafficking protein whose defect gives rise to lysosomal accumulation of cholesterol and other lipids, leading to NPC disease. NPC1 cells also develop a secondary defect in acid sphingomyelinase (SMase) activity despite a normal acid SMase gene (SMPD1). When acid SMase activity was restored to normal levels in NPC1‐deficient CHO cells through SMPD1 transfection, there was a dramatic reduction in lysosomal cholesterol. Two other defects, excess lysosomal bis‐(monoacylglycerol) phosphate (BMP) and defective transferrin receptor (TfR) recycling, were also markedly improved. To test its relevance in human cells, the acid SMase activity defect in fibroblasts from NPC1 patients was corrected by SMPD1 transfection or acid SMase enzyme replacement. Both treatments resulted in a dramatic reduction in lysosomal cholesterol. These data show that correcting one aspect of a complex lysosomal lipid storage disease can reduce the cellular consequences even if the primary genetic defect is not corrected. 相似文献
8.
Parra J Klein AD Castro J Morales MG Mosqueira M Valencia I Cortés V Rigotti A Zanlungo S 《Biochemical and biophysical research communications》2011,(3):400-406
Niemann–Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid storage disorder. The affected genes are NPC1 and NPC2. Mutations in either gene lead to intracellular cholesterol accumulation. There are three forms of the disease, which are categorized based on the onset and severity of the disease: the infantile form, in which the liver and spleen are severely affected, the juvenile form, in which the liver and brain are affected, and the adult form, which affects the brain. In mice, a spontaneous mutation in the Npc1 gene originated in the BALB/c inbred strain mimics the juvenile form of the disease. To study the influence of genetic background on the expression of NPC disease in mice, we transferred the Npc1 mutation from the BALB/c to C57BL/6J inbred background. We found that C57BL/6J-Npc1−/− mice present with a much more aggressive form of the disease, including a shorter lifespan than BALB/c-Npc1−/− mice. Surprisingly, there was no difference in the amount of cholesterol in the brains of Npc1−/− mice of either mouse strain. However, Npc1−/− mice with the C57BL/6J genetic background showed striking spleen damage with a marked buildup of cholesterol and phospholipids at an early age, which correlated with large foamy cell clusters. In addition, C57BL/6J Npc1−/− mice presented red cell abnormalities and abundant ghost erythrocytes that correlated with a lower hemoglobin concentration. We also found abnormalities in white cells, such as cytoplasmic granulation and neutrophil hypersegmentation that included lymphopenia and atypias. In conclusion, Npc1 deficiency in the C57BL6/J background is associated with spleen, erythrocyte, and immune system abnormalities that lead to a reduced lifespan. 相似文献
9.
Exit of recycling cholesterol from late endosomes is defective in Niemann-Pick C1 (NPC1) and Niemann-Pick C2 (NPC2) diseases. The traffic route of the recycling proteoglycan glypican-1 (Gpc-1) may also involve late endosomes and could thus be affected in these diseases. During recycling through intracellular compartments, the heparan sulfate (HS) side chains of Gpc-1 are deaminatively degraded by nitric oxide (NO) derived from preformed S-nitroso groups in the core protein. We have now investigated whether this NO-dependent Gpc-1 autoprocessing is active in fibroblasts from NPC1 disease. The results showed that Gpc-1 autoprocessing was defective in these cells and, furthermore, greatly depressed in normal fibroblasts treated with U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), a compound widely used to induce cholesterol accumulation. In both cases, autoprocessing was partially restored by treatment with ascorbate which induced NO release, resulting in deaminative cleavage of HS. However, when NO-dependent Gpc-1 autoprocessing is depressed and heparanase-catalyzed degradation of HS remains active, a truncated Gpc-1 with shorter HS chains would prevail, resulting in fewer NO-sensitive sites/proteoglycan. Therefore, addition of ascorbate to cells with depressed autoprocessing resulted in nitration of tyrosines. Nitration was diminished when heparanase was inhibited with suramin or when Gpc-1 expression was silenced by RNAi. Gpc-1 misprocessing in NPC1 cells could thus contribute to neurodegeneration mediated by reactive nitrogen species. 相似文献
10.
Candice Kutchukian Oscar Vivas Maria Casas Julia G Jones Scott A Tiscione Sergi Sim Daniel S Ory Rose E Dixon Eamonn J Dickson 《The EMBO journal》2021,40(13)
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann‐Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4‐phosphate (PtdIns4P) countertransport cycle between Golgi‐endoplasmic reticulum (ER), as well as lysosome‐ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4‐kinases—PI4KIIα and PI4KIIIβ—which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease. 相似文献
11.
Lauri Vanharanta Johan Pernen Simon G. Pfisterer Giray Enkavi Ilpo Vattulainen Elina Ikonen 《Traffic (Copenhagen, Denmark)》2020,21(5):386-397
The human Niemann‐Pick C1 (NPC1) gene encoding a 1278 amino acid protein is very heterogeneous. While some variants represent benign polymorphisms, NPC disease carriers and patients may possess rare variants, whose functional importance remains unknown. An NPC1 cDNA construct known as NPC1 wild‐type variant (WT‐V), distributed between laboratories and used as a WT control in several studies, also contains changes regarding specific amino acids compared to the NPC1 Genbank reference sequence. To improve the dissection of subtle functional differences, we generated human cells stably expressing NPC1 variants from the AAVS1 safe‐harbor locus on an NPC1‐null background engineered by CRISPR/Cas9 editing. We then employed high‐content imaging with automated image analysis to quantitatively assess LDL‐induced, time‐dependent changes in lysosomal cholesterol content and lipid droplet formation. Our results indicate that the L472P change present in NPC1 WT‐V compromises NPC1 functionality in lysosomal cholesterol export. All‐atom molecular dynamics simulations suggest that the L472P change alters the relative position of the NPC1 middle and the C‐terminal luminal domains, disrupting the recently characterized cholesterol efflux tunnel. These results reveal functional defects in NPC1 WT‐V and highlight the strength of simulations and quantitative imaging upon stable protein expression in elucidating subtle differences in protein function. 相似文献
12.
Jansen M Ohsaki Y Rita Rega L Bittman R Olkkonen VM Ikonen E 《Traffic (Copenhagen, Denmark)》2011,12(2):218-231
In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation of transport from the PM to the ER, rather than from the ER to LDs. Double knockdown of ORP1S and ORP2 inhibited sterol transport from the PM to the ER and LDs, suggesting a physiological role for these ORPs in the process. A two phenylalanines in an acidic tract (FFAT) motif in ORPs that mediates interaction with VAMP-associated proteins (VAPs) in the ER was not necessary for the enhancement of sterol transport by ORPs. However, VAP-A and VAP-B silencing slowed down PM-to-LD sterol transport. This was accompanied by enhanced degradation of ORP2 and decreased levels of several FFAT motif-containing ORPs, suggesting a role for VAPs in sterol transport by stabilization of ORPs. 相似文献
13.
14.
Sawamura N Gong JS Chang TY Yanagisawa K Michikawa M 《Journal of neurochemistry》2003,84(5):1086-1096
Niemann-Pick type C (NPC) disease is a cholesterol-storage disease accompanied by neurodegeneration with the formation of neurofibrillary tangles, the major component of which is the hyperphosphorylated tau. Here, we examined the mechanism underlying hyperphosphorylation of tau using mutant Chinese hamster ovary (CHO) cell line defective in NPC1 (CT43) as a tool. Immunoblot analysis revealed that tau was hyperphosphorylated at multiple sites in CT43 cells, but not in their parental cells (25RA) or the wild-type CHO cells. In CT43 cells, mitogen-activated protein (MAP) kinase Erk1/2 was activated and the specific MAPK inhibitor, PD98059, attenuated the hyperphosphorylation of tau. The amount of protein phosphatase 2A not bound to microtubules was decreased in CT43 cells. CT43 cells but not 25RA cells were amphotericin B-resistant, indicating that cholesterol level in the plasma membrane of CT43 is decreased. In addition, the level of cholesterol in the detergent-insoluble, low-density membrane (LDM) fraction of CT43 cells was markedly reduced compared with the other two types of CHO cells. As LDM domain plays critical role in signaling pathways, these results suggest that the reduced cholesterol level in LDM domain due to the lack of NPC1 may activate MAPK, which subsequently promotes tau phosphorylation in NPC1-deficient cells. 相似文献
15.
Melissa R. Pergande Thu T. A. Nguyen Carol Haney‐Ball Cristin D. Davidson Stephanie M. Cologna 《Proteomics》2019,19(9)
Niemann–Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow‐ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late‐stage pathophysiology of NPC1. 相似文献
16.
Zhang J Ming LJ Sjövall J Cook HW Ridgway ND Byers DM 《The Journal of steroid biochemistry and molecular biology》1999,70(4-6):123-131
Progesterone inhibits intracellular transport of lysosomal cholesterol in cultured cells, and thus at least in part mimics the biochemical phenotype of Niemann–Pick type C disease (NPC) in human fibroblasts. The goal of this study was to determine whether metabolism of progesterone to other steroids is affected by the NPC mutation or by P-glycoprotein (a known progesterone target). We found that human fibroblasts metabolize progesterone in three steps: rapid conversion to 5-pregnane-3,20-dione, which is then reduced to 5-pregnane-3β()-ol-20-one with subsequent 6-hydroxylation. The pattern and rates of progesterone metabolism were not significantly different in a variety of fibroblasts from normal individuals, NPC patients, and obligate heterozygotes. Inhibition of steroid 5-reductase with finasteride completely blocked metabolism of progesterone but had no effect on inhibition of LDL-stimulated cholesterol esterification (IC50=10 μM). Progesterone also partially inhibited 25-hydroxycholesterol-induced cholesterol esterification, with similar dose-dependence in normal and NPC fibroblasts. P-glycoprotein levels varied significantly among the various fibroblasts tested, but no correlation with NPC phenotype or rate of progesterone metabolism was noted, and P-glycoprotein inhibitors did not affect conversion of progesterone to products. These results indicate that metabolism of progesterone in human fibroblasts is largely independent of its ability to interfere with cholesterol traffic and P-glycoprotein function. 相似文献
17.
Erickson RP Kiela M Devine PJ Hoyer PB Heidenreich RA 《Molecular reproduction and development》2002,62(2):167-173
Niemann-Pick type C disease is a progressive neurological disease with cholesterol storage in liver, and npc1-/- mice share these features and are sterile. We have searched for the cause of sterility and found normal folliculogenesis and progesterone levels but lack of implantation. Multiple drug resistance (MDR) P-glycoproteins are plasma membrane proteins implicated in the movement of drugs and lipids across membranes. Their functions are inhibited by progesterone, which has been shown to alter cellular cholesterol homeostasis and has implicated P-glycoproteins in the movement of cholesterol to the endoplasmic reticulum. We have introduced the mdr1a knockout into the npc1 mutant line. While the neurological disease continues at its usual rate, preventing the females from taking care of their litters, npc1-/-, mdr1a-/- females became fertile. Although the mdr1a P-glycoprotein co-localizes with caveolae, neither caveolin-1 nor npc1 levels were significantly altered in the livers of double homozygotes. The absence of mdr1a was confirmed by immunoblotting, but npc1 deficiency was not associated with consistent changes in cerebellar mdr1a in mdr1a+/+ mice. The results show that a mdr1a mutation is an in vivo suppressor of female sterility in npc1 deficient mice. 相似文献
18.
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation. 相似文献
19.
Harry R. Davis Jr. Scott W. Altmann 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(7):679-683
Niemann–Pick C1 Like 1 (NPC1L1) has been identified and characterized as an essential protein in the intestinal cholesterol absorption process. NPC1L1 localizes to the brush border membrane of absorptive enterocytes in the small intestine. Intestinal expression of NPC1L1 is down regulated by diets containing high levels of cholesterol. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that cholesterol absorption inhibitor ezetimibe specifically binds to an extracellular loop of NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice are resistant to diet-induced hypercholesterolemia, and when crossed with apo E null mice, are completely resistant to the development of atherosclerosis. Intestinal gene expression studies in Npc1l1 null mice indicated that no exogenous cholesterol was entering enterocytes lacking NPC1L1, which resulted in an upregulation of intestinal and hepatic LDL receptor and cholesterol biosynthetic gene expression. Polymorphisms in the human NPC1L1 gene have been found to influence cholesterol absorption and plasma low density lipoprotein levels. Therefore, NPC1L1 is a critical intestinal sterol uptake transporter which influences whole body cholesterol homeostasis. 相似文献
20.
Liscum L 《Traffic (Copenhagen, Denmark)》2000,1(3):218-225
The Niemann–Pick C protein (NPC1) is required for cholesterol transport from late endosomes and lysosomes to other cellular membranes. Mutations in NPC1 cause lysosomal lipid storage and progressive neurological degeneration. Cloning of the NPC1 gene has given us tools with which to investigate the function of this putative cholesterol transporter. Here, we discuss recent studies indicating that NPC1 is not a cholesterol-specific transport molecule. Instead, NPC1 appears to be required for the vesicular shuttling of both lipids and fluid-phase constituents from multivesicular late endosomes to destinations such as the trans -Golgi network. 相似文献