共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrick J. Horn Montgomery D. Smith Tessa R. Clark John E. Froehlich Christoph Benning 《The Plant journal : for cell and molecular biology》2020,102(4):718-729
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid‐associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild‐type levels of 16:1t. The FAD4–PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co‐production of PRXQ with FAD4 was required to produce Δ3‐desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site‐directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids. 相似文献
2.
Van Cam Nguyen Yuki Nakamura Kazue Kanehara 《The Plant journal : for cell and molecular biology》2019,99(3):478-493
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER‐synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue‐specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin‐induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis. 相似文献
3.
4.
5.
Samuel Le Goff Burcu Nur Keeli Hana Jebkov Stefan Heckmann Twan Rutten Sylviane Cotterell Veit Schubert Elisabeth Roitinger Karl Mechtler F. Christopher H. Franklin Christophe Tatout Andreas Houben Danny Geelen Aline V. Probst Inna Lermontova 《The Plant journal : for cell and molecular biology》2020,101(1):71-86
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non‐nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co‐expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N‐terminal tail and the histone fold domain of non‐nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone. 相似文献
6.
7.
R. Glen Uhrig Pascal Schlpfer Bernd Roschitzki Matthias Hirsch‐Hoffmann Wilhelm Gruissem 《The Plant journal : for cell and molecular biology》2019,99(1):176-194
Protein phosphorylation and acetylation are the two most abundant post‐translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co‐occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual‐PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process‐, pathway‐ and protein‐level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway‐ and cellular process‐level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual‐PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation. 相似文献
8.
9.
Vladimir Maksimov Miyuki Nakamura Thomas Wildhaber Paolo Nanni Margareta Ramström Jonas Bergquist Lars Hennig 《The Plant journal : for cell and molecular biology》2016,88(3):425-436
Histones are abundant cellular proteins but, if not incorporated into chromatin, they are usually bound by histone chaperones. Here, we identify Arabidopsis NASP as a chaperone for histones H3.1 and H3.3. NASP interacts in vitro with monomeric H3.1 and H3.3 as well as with histone H3.1–H4 and H3.3–H4 dimers. However, NASP does not bind to monomeric H4. NASP shifts the equilibrium between histone dimers and tetramers towards tetramers but does not interact with tetramers in vitro. Arabidopsis NASP promotes [H3–H4]2 tetrasome formation, possibly by providing preassembled histone tetramers. However, NASP does not promote disassembly of in vitro preassembled tetrasomes. In contrast to its mammalian homolog, Arabidopsis NASP is a predominantly nuclear protein. In vivo, NASP binds mainly monomeric H3.1 and H3.3. Pulldown experiments indicated that NASP may also interact with the histone chaperone MSI1 and a HSC70 heat shock protein. 相似文献
10.
Marjaana Suorsa Marjaana Rantala Fikret Mamedov Maija Lespinasse Andrea Trotta Michele Grieco Eerika Vuorio Mikko Tikkanen Sari Järvi Eva‐Mari Aro 《The Plant journal : for cell and molecular biology》2015,84(2):360-373
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non‐appressed thylakoids harbor several high molecular mass pigment–protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light‐harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non‐appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment–protein complexes from all thylakoid compartments, revealed that the pigment–protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment–protein megacomplexes specifically in non‐appressed thylakoids undergoes redox‐dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions. 相似文献
11.
Nayoung Lee Hyojin Kang Daeyoup Lee Giltsu Choi 《The Plant journal : for cell and molecular biology》2014,78(2):282-293
Phytochrome‐interacting factor 1 (PIF1) inhibits light‐dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high‐level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light‐dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light‐dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high‐level expression of PIF1 mRNA in imbibed seeds. 相似文献
12.
13.
Bat‐Chen Wolf Tal Isaacson Vivekanand Tiwari Inbal Dangoor Sapir Mufkadi Avihai Danon 《The Plant journal : for cell and molecular biology》2020,103(2):715-725
PGR5‐LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) regulates photosystem I cyclic electron flow which transiently activates non‐photochemical quenching at the onset of light. Here, we show that a disulfide‐based mechanism of PGRL1 regulated this process in vivo at the onset of low light levels. We found that PGRL1 regulation depended on active formation of key regulatory disulfides in the dark, and that PGR5 was required for this activity. The disulfide state of PGRL1 was modulated in plants by counteracting reductive and oxidative components and reached a balanced state that depended on the light level. We propose that the redox regulation of PGRL1 fine‐tunes a timely activation of photosynthesis at the onset of low light. 相似文献
14.
Ella Katz Sophia Nisani Brijesh S. Yadav Melkamu G. Woldemariam Ben Shai Uri Obolski Marcelo Ehrlich Eilon Shani Georg Jander Daniel A. Chamovitz 《The Plant journal : for cell and molecular biology》2015,82(4):547-555
The glucosinolate breakdown product indole‐3‐carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole‐3‐carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole‐3‐carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole‐3‐carbinol rapidly and reversibly inhibits root elongation in a dose‐dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole‐3‐carbinol and the auxin perception machinery was suggested, as application of indole‐3‐carbinol rescues auxin‐induced root phenotypes. In vitro and yeast‐based protein interaction studies showed that indole‐3‐carbinol perturbs the auxin‐dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3‐indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole‐3‐carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole‐3‐carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development. 相似文献
15.
Kateina Adamusov Solmaz Khosravi Satoru Fujimoto Andreas Houben Sachihiro Matsunaga Jií Fajkus Miloslava Fojtov 《The Plant journal : for cell and molecular biology》2020,102(4):678-687
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non‐canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate‐type telomere repeat TTAGGG or Allium genus‐specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non‐canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR‐dCas9‐eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C‐3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis‐like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco‐like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere‐associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions. 相似文献
16.
17.
Anh H. Ngo Kazue Kanehara Yuki Nakamura 《The Plant journal : for cell and molecular biology》2019,100(4):825-835
Mutants in lipid metabolism often show a lethal phenotype during reproduction that prevents investigating a specific role of the lipid during different developmental processes. We focused on two non‐specific phospholipases C, NPC2 and NPC6, whose double knock‐out causes a gametophyte‐lethal phenotype. To investigate the role of NPC2 and NPC6 during vegetative growth, we produced transgenic knock‐down mutant lines that circumvent the lethal effect during gametogenesis. Despite no defect observed in leaves, root growth was significantly retarded, with abnormal cellular architecture in root columella cells. Furthermore, the short root phenotype was rescued by exogenous supplementation of phosphocholine, a product of non‐specific phospholipase C (NPC) ‐catalyzed phosphatidylcholine hydrolysis. The expression of phospho‐base N‐methyltransferase 1 (PMT1), which produces phosphocholine and is required for root growth, was induced in the knock‐down mutant lines and was attenuated after phosphocholine supplementation. These results suggest that NPC2 and NPC6 may be involved in root growth by producing phosphocholine via metabolic interaction with a PMT‐catalyzed pathway, which highlights a tissue‐specific role of NPC enzymes in vegetative growth beyond the gametophyte‐lethal phenotype. 相似文献
18.
Zhi‐Yan Du Mo‐Xian Chen Qin‐Fang Chen Shi Xiao Mee‐Len Chye 《The Plant journal : for cell and molecular biology》2013,74(2):294-309
A family of six genes encoding acyl‐CoA‐binding proteins (ACBPs), ACBP1–ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1‐over‐expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over‐production in 12‐day‐old seedlings up‐regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress‐responsive genes: ABA‐RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH‐TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12‐day‐old seedlings of ACBP1‐over‐expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two‐hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA‐mediated seed germination and seedling development. 相似文献
19.
Jing Gao Paula J. M. van Kleeff Claudia Oecking Ka Wan Li Alexander Erban Joachim Kopka Dirk K. Hincha Albertus H. de Boer 《The Plant journal : for cell and molecular biology》2014,80(5):785-796
Alkaline/neutral invertases (A/N‐Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At‐A/N‐InvG or AT1G35580). We demonstrate that Ser547 at the extreme C‐terminus of the AtCINV1 protein is a substrate of calcium‐dependent kinases (CPK3 and 21) and that phosphorylation creates a high‐affinity binding site for 14‐3‐3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14‐3‐3 proteins enhances its activity. The analysis of three quadruple 14‐3‐3 mutants generated from six T‐DNA insertion mutants of the non‐epsilon family shows both specificity as well as redundancy for this function of 14‐3‐3 proteins. The strong reduction in hexose levels in the roots of one 14‐3‐3 quadruple mutant plant is in line with the activating function of 14‐3‐3 proteins. The physiological relevance of this mechanism that affects A/N‐invertase activity is underscored by the light‐induced activation and is another example of the central role of 14‐3‐3 proteins in mediating dark/light signaling. The nature of the light‐induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca++ changes that activate calcium‐dependent kinases, await further study. 相似文献
20.
Swarup Roy Choudhury Mao Li Veronica Lee Raja Sekhar Nandety Kirankumar S. Mysore Sona Pandey 《The Plant journal : for cell and molecular biology》2020,102(2):207-221
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole Gβ or all Gγ genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of Gα and Gβ genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments. 相似文献