首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN‐DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin‐dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK‐insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.  相似文献   

2.
Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR‐associated gene 9) system has been transformative in biology. Originally discovered as an adaptive prokaryotic immune system, CRISPR/Cas9 has been repurposed for genome editing in a broad range of model organisms, from yeast to mammalian cells. Protist parasites are unicellular organisms producing important human diseases that affect millions of people around the world. For many of these diseases, such as malaria, Chagas disease, leishmaniasis and cryptosporidiosis, there are no effective treatments or vaccines available. The recent adaptation of the CRISPR/Cas9 technology to several protist models will be playing a key role in the functional study of their proteins, in the characterization of their metabolic pathways, and in the understanding of their biology, and will facilitate the search for new chemotherapeutic targets. In this work we review recent studies where the CRISPR/Cas9 system was adapted to protist parasites, particularly to Apicomplexans and trypanosomatids, emphasizing the different molecular strategies used for genome editing of each organism, as well as their advantages. We also discuss the potential usefulness of this technology in the green alga Chlamydomonas reinhardtii.  相似文献   

3.
Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2O2) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence‐associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O‐methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild‐type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild‐type rice. Moreover, overexpression of OsMTS1 in the wild‐type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.  相似文献   

4.
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non‐photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor‐intensive and time‐consuming generation of stable transgenic lines and mutant populations – approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ‐related genes from diverse organisms, we performed Agrobacterium tumefaciens‐mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.  相似文献   

5.
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.  相似文献   

6.
7.
8.
9.
10.
11.
Anemone sensu lato (including Pulsatilla and Hepatica), tribe Anemoneae (Ranunculaceae), is arranged into two subgenera, Anemone and Anemonidium, with basic chromosome numbers = 8 and = 7, respectively. We elucidated the level of divergence of 5S rDNA unit arrays between the subgenera, determined intra‐individual and interspecific sequence variation and tested 5S rDNA phylogenetic signal in revealing the origin of polyploid species. High intra‐individual nucleotide diversity and the presence of 5S rDNA unit array length variants and pseudogenes indicate that weak homogenization forces have shaped 5S rDNA in the investigated species. Our results show that 5S rDNA evolved through two major changes: diversification of 5S rDNA into two lineages, one with long (subgenus Anemone) and one with short 5S rDNA unit arrays (subgenus Anemonidium); and subsequent contraction and expansion of 5S rDNA unit arrays. Phylogenetic analysis based on 5S rDNA supports the hypothesis that A. parviflora could be a parental species and donor of the subgenome D to the allopolyploids A. multifida (BBDD) and A. baldensis (AABBDD). In A. baldensis interlocus exchange possibly occurred, followed by subsequent replacement of the 5S rDNA from subgenome D with those from subgenome B. Here we present evidence that both models, concerted and birth‐and‐death evolution, were probably involved in the evolution of the 5S rDNA multigene family in subgenera Anemone and Anemonidium.  相似文献   

12.
Narwhal and beluga whales are important species to Arctic ecosystems, including subsistence hunting by Inuit, and little is understood about their mating ecology. Reproductive tract metrics vary across species in relation to mating strategy, and have been used to infer mating ecology. Reproductive tracts from beluga and narwhal were collected between 1997 and 2008 from five beluga stocks and two narwhal stocks across the Canadian Arctic. Tract length for males and females, relative testes mass for males, and tusk length for male narwhal were measured. We assessed variation relative to species, body size, stock, maturity, and season. Significant variation was found in testes mass across month and stock for beluga, and no significant difference between stock or date of harvest for narwhal. Beluga had significantly larger testes relative to body size than narwhal, suggesting they were more promiscuous than narwhal. A significant relationship was found between narwhal tusk length and testes mass, indicating the tusk may be important in female mate choice. No significant differences were found between narwhal and beluga reproductive tract length for males or females. The mating systems suggested for narwhal and belugas by our results mean the two species may respond differently to climate change.  相似文献   

13.
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4′-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4′-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3′-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4′-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.  相似文献   

14.
Septins are a group of GTP‐binding proteins that are multi‐functional, with a well‐known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog‐possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.  相似文献   

15.
16.
TRANSPARENT TESTA2 (TT2) regulates the biosynthesis of proanthocyanidins in the seed coat of Arabidopsis. We recently found that TT2 also participates in inhibition of fatty acid (FA) biosynthesis in the seed embryo. However, the mechanism by which TT2 suppresses the accumulation of seed FA remains unclear. In this study, we show that TT2 is expressed in embryos at an early developmental stage. TT2 is directly bound to the regulatory region of FUSCA3 (FUS3), and mediates the expression of numerous genes in the FA biosynthesis pathway. These genes include BCCP2, CAC2, MOD1 and KASII, which encode proteins involved in the initial steps of FA chain formation, FAD2 and FAD3, which are responsible for FA desaturation, and FAE1, which catalyzes very‐long‐chain FA elongation. Loss of function of TT2 results in reduced expression of GLABRA2 but does not cause a significant reduction in the mucilage attached to the seed coats, which competes with FA for photosynthates. TT2 is expressed in both maternal seed coats and embryonic tissues, but proanthocyanidins are only found in wild‐type seed coats and not in embryonic tissues. The amount of proanthocyanidins in the seed coat is negatively correlated with the amount of FAs in the embryo.  相似文献   

17.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

18.
Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O‐methylation reactions. cDNAs encoding the O‐methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab‐causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5‐dihydroxybiphenyl, supplied by the first pathway‐specific enzyme, biphenyl synthase (BIS). 3,5‐Dihydroxybiphenyl underwent a single methylation reaction in the presence of S‐adenosyl‐l ‐methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5‐hydroxyferulic acid. Both substrates were only methylated at the meta‐positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor‐treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N‐ and C‐terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.  相似文献   

19.
Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef‐building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (colony 2.0, cervus 3.0, mltr v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean tm = 0.999) in multiple paternity broods (mean rp = 0.119). Self‐fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号