首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRANSPARENT TESTA2 (TT2) regulates the biosynthesis of proanthocyanidins in the seed coat of Arabidopsis. We recently found that TT2 also participates in inhibition of fatty acid (FA) biosynthesis in the seed embryo. However, the mechanism by which TT2 suppresses the accumulation of seed FA remains unclear. In this study, we show that TT2 is expressed in embryos at an early developmental stage. TT2 is directly bound to the regulatory region of FUSCA3 (FUS3), and mediates the expression of numerous genes in the FA biosynthesis pathway. These genes include BCCP2, CAC2, MOD1 and KASII, which encode proteins involved in the initial steps of FA chain formation, FAD2 and FAD3, which are responsible for FA desaturation, and FAE1, which catalyzes very‐long‐chain FA elongation. Loss of function of TT2 results in reduced expression of GLABRA2 but does not cause a significant reduction in the mucilage attached to the seed coats, which competes with FA for photosynthates. TT2 is expressed in both maternal seed coats and embryonic tissues, but proanthocyanidins are only found in wild‐type seed coats and not in embryonic tissues. The amount of proanthocyanidins in the seed coat is negatively correlated with the amount of FAs in the embryo.  相似文献   

2.
Triacylglycerol (TAG) is the major storage component accumulated in seed. However the regulatory mechanism of TAG synthesis and accumulation in non-seed tissues remains unknown. Recently, we found that nitrogen (N) deficiency (0.1mM N) caused an inducement of TAG biosynthesis in Arabidopsis seedlings. ABSCISIC ACID INSENSITIVE 4 (ABI4) was essential for the activation of Acyl-CoA:diacylglycerol acyltransferase1(DGAT1) expression during N deficiency in Arabidopsis seedlings. In this addendum, we further discussed the approaches to provide a net increase in total oil production in higher plants by using the low N platform. First, the N-deficient seedlings can be used to determine the key factors that regulate the ectopic expression of key genes in TAG metabolism. Second, the research on the relationship between TAG homeostasis and cell division will be helpful to find the key factors that specifically regulate TAG accumulation under the nutrient-limited condition.  相似文献   

3.
4.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

5.
The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine‐rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine‐rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ‐gliadin‐δ‐zein and γ‐δ‐zein, as well as δ‐zein co‐expressed with β‐zein, all formed protein bodies. However, the γ‐gliadin‐δ‐zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ‐gliadin‐δ‐zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ‐gliadin‐δ‐zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ‐gliadin‐GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ‐gliadin‐δ‐zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ‐gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1–1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1–1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo 14C‐acetate labeling experiments showed that, compared with wild‐type, tgd1–1 exhibits a 3.8‐fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over‐expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1–1. We also show that detached leaves of both pdat1–2 and tgd1–1 pdat1–2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA‐induced cell death in fast‐growing tissues of plants.  相似文献   

15.
Burley tobaccos (Nicotiana tabacum) display a nitrogen‐use‐deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco‐specific nitrosamines (TSNAs). Two TSNA species, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) and N‐nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen‐assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field‐grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well‐documented animal carcinogens found in tobacco products.  相似文献   

16.
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non‐nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co‐expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N‐terminal tail and the histone fold domain of non‐nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.  相似文献   

17.
18.
19.
Protein phosphorylation and acetylation are the two most abundant post‐translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co‐occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual‐PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process‐, pathway‐ and protein‐level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway‐ and cellular process‐level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual‐PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号