首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies on the metabolic fate of n-3 polyunsaturated fatty acids   总被引:3,自引:0,他引:3  
Several different processes involved in the metabolic fate of docosahexaenoic acid (DHA, C22:6n-3) and its precursor in the biosynthesis route, C24:6n-3, were studied. In cultured skin fibroblasts, the oxidation rate of [1-14C] 24:6n-3 was 2.7 times higher than for [1-14C]22:6n-3, whereas [1-14C]22:6n-3 was incorporated 7 times faster into different lipid classes than was [1-14C]24:6n-3. When determining the peroxisomal acyl-CoA oxidase activity, similar specific activities for C22:6(n-3)-CoA and C24:6(n-3)-CoA were found in mouse kidney peroxisomes. Thioesterase activity was measured for both substrates in mouse kidney peroxisomes as well as mitochondria, and C22:6(n-3)-CoA was hydrolyzed 1.7 times faster than C24:6(n-3)-CoA. These results imply that the preferred metabolic fate of C24:6(n-3)-CoA, after its synthesis in the endoplasmic reticulum (ER), is to move to the peroxisome, where it is beta-oxidized, producing C22:6(n-3)-CoA. This DHA-CoA then preferentially moves back, probably as free fatty acid, to the ER, where it is incorporated into membrane lipids.  相似文献   

2.
3.
4.
5.
6.
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.  相似文献   

7.
8.
Studies on the uptake of fatty acids by Escherichia coli   总被引:10,自引:0,他引:10  
Oleate uptake by Escherichia coli showed saturation kinetics with a Km of 34 μm and an activation energy of 6.25 kcal/mole indicating that the rate limiting step in oleate uptake involves an enzyme-catalyzed step. The rate of oleate uptake was decreased by the respiratory poisons, arsenate and 4-pentenoate, which apparently is activated to pentenoyl CoA, thus reducing the intracellular concentration of free intracellular CoA. These data indicated that oleate uptake is dependent on cellular ATP and CoA. During short pulses with [1-14C]oleate, most of the radioactivity which was taken up was released as 14C02; cells accumulated radioactivity in phospholipids and compounds with the chromatographic mobility of Krebs cycle intermediates. Neither free fatty acid nor oleyl CoA were detectable in the cells. The results support the hypothesis that long-chain fatty acids are translocated by the long-chain fatty acyl CoA synthetase and that uptake is the rate limiting step in the utilization of exogenous fatty acid.  相似文献   

9.
Anillin (ANLN), an actin-binding protein, is required for cytokinesis. Recently, ANLN has been identified as a biomarker in diverse human cancers; however, the precise role of ANLN in breast cancer remains unclear. In this study, we firstly detected the expression of ANLN in 71 patients with breast cancer by immunohistochemistry, and found ANLN was highly expressed in breast cancer tissues. To evaluate the function of ANLN in breast cancer cells, we employed lentivirus-mediated RNA interference to knock down ANLN expression in two human breast cancer cell lines, MDA-MB-231, and ZR-75-30. Knockdown of ANLN remarkably inhibited the proliferation rate and colony formation ability of both breast cancer cell lines. Moreover, flow cytometry analysis showed that depletion of ANLN in MDA-MB-231 cells blocked the cell cycle progression, with more cells delayed at G2/M phase, due to phosphorylation of Cdc2 and suppression of Cyclin D1. Furthermore, knockdown of ANLN strongly suppressed the migration of breast cancer cells, strengthening the evidence that ANLN could be involved in breast cancer progression. Our results may suggest ANLN as a potential target candidate in breast cancer.  相似文献   

10.
Objective: Fatty acid (FA) composition has a role in adipogenesis. The objective was to study serum phospholipid (PL) FAs in adolescents and their relation to abdominal adipose tissue (AT) compartments and metabolic markers. Research Methods and Procedures: Abdominal AT was measured by magnetic resonance imaging and FA pattern was determined in serum PL of 10 obese adolescents (5 females), median age 12.0 years (range, 10.4 to 16.4) and BMI 30.7 (26.8 to 40.4), and 15 lean control subjects (9 females), median age 12.6 years (range, 11.3 to 15.4), and BMI 19.5 (17.1 to 23.4). Results: Obese adolescents had relatively higher levels of saturated FA (SFA) and nervonic acid compared with controls. Serum PL concentration of n‐3 polyunsaturated fatty acids (PUFA) was lower in the obese vs. lean females (p = 0.01), including docosahexaenoic acid (DHA) (p = 0.01). The ratios of arachidonic acid to DHA and total n‐6/n‐3 FA were increased in obese children (p = 0.02 and 0.01, respectively). n‐3 PUFAs were inversely correlated to all subcutaneous AT compartments except visceral AT. The homeostasis model assessment index of β‐cell function related inversely to DHA concentration (p = 0.03). All changes were more marked in the females. Discussion: Serum FA pattern in obese adolescents differed significantly from that in age‐matched lean controls, reflecting a decrease in n‐3 PUFA, especially DHA, and an increase in SFA. The subcutaneous AT, but not visceral AT, correlated to the changes in PUFA and SFA, suggesting an abnormal essential FA metabolism in obese adolescents.  相似文献   

11.
12.
Studies on furan fatty acids of salmon roe phospholipids   总被引:2,自引:0,他引:2  
Mature salmon roe lipids were found to consist of triacylglycerols (63%), phospholipids (30%), sterols (4.2%), steryl esters (0.7%), and other minor components. In the steryl esters and phospholipids, furan fatty acids were detected instead of the triacylglycerols of the testes lipids in male fish. The representative 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid (F6) amounted to 3.8% and 0.6% of the total fatty acids in each fraction, respectively. However, the absolute amount of the acid in the phospholipid was much more than that contained in the steryl esters. The characteristic distribution of the furan acids found in the phospholipids was common to the steryl esters in the liver. Large amounts of furan acids were contained in phosphatidylcholine (PC) rather than in phosphatidylethanolamine. For positional analysis of furan fatty acids in PC, furan-containing species in the molecule were concentrated fourteenfold by using selective hydrogenation and repeated silica gel column chromatography. A series of furan fatty acids in PC was found to be exclusively linked to the sn-1 position. The amount of the acids in the roe exclusively linked to the sn-1 position. The amount of the acids in the roe phospholipids was comparable with that in the testes triacylglycerols. The physiological roles of furan fatty acids are discussed.  相似文献   

13.
14.
15.
16.
17.
Three strains (2ac9, 3ac10 and 4ac11) of oval to rodshaped, Gram negative, nonsporing sulfate-reducing bacteria were isolated from brackish water and marine mud samples with acetate as sole electron donor. All three strains grew in simple defined media supplemented with biotin and 4-aminobenzoic acid as growth factors. Acetate was the only electron donor utilized by strain 2ac9, while the other two strains used in addition ethanol and/or lactate. Sulfate served as electron acceptor and was reduced to H2S. Complete oxidation of acetate to CO2 was shown by stoichiometric measurements with strain 2ac9 in batch cultures using sulfate, sulfite or thiosulfate as electron acceptors. With sulfate an average growth yield of 4.8 g cell dry weight was obtained per mol of acetate oxidized; with sulfite or thiosulfate the growth yield on acetate was about twice as high. None of the strains contained desulfoviridin. In strain 2ac9 cytochromes of the b- and c-type were detected. Strain 2ac9 is described as type strain of the new species and genus, Desulfobacter postgatei.  相似文献   

18.
Gliding motility, ultrastructure and nutrition of two newly isolated filamentous sulfate-reducing bacteria, strains 5ac10 and 4be13, were investigated. The filaments were always attached to surfaces. Growth was supported by addition of insoluble aluminium phosphate or agar as substrata for gliding movement. Electron microscopy of ultrathin sections revealed cell walls characteristic of Gramnegative bacteria; the undulated structure of the outer membrane may pertain to the translocation mechanism. Intracytoplasmic membranes were present. Acetate, higher fatty acids, succinate or fumarate served as electron donors and carbon sources. Strain 5ac10 grew also with lactate, but not with benzoate that was used only by strain 4be13. Strain 5ac10 was able to grow slowly on H2 plus CO2 or formate in the presence of sulfate without additional organic carbon source. The capacity of complete oxidation was shown by stoichiometric measurements with acetate plus sulfate. Both strains contained b- and c-type cytochromes. Desulfoviridin was detected only in strain 5ac10. The two filamentous gliding sulfate reducers are described as new species of a new genus, Desulfonema limicola and Desulfonema magnum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号