首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+/CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a–1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.  相似文献   

2.
3.
4.
It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein–protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.  相似文献   

5.
  • Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress.
  • Seedlings of two accessions (salt‐tolerant ‘JM0119’ and salt‐sensitive ‘JM0099’) were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured.
  • The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long‐term salinity exposure in ‘JM0119’ than in ‘JM0099’, while activity of NADP‐malate dehydrogenase (NADP‐MDH) and NADP‐malic enzyme (NADP‐ME), together with expression of NADP‐MDH and NADP‐ME, were much higher in ‘JM0099’ than in ‘JM0119’.
  • In conclusion, the increased photosynthetic capacity under long‐term salt stress in the salt‐tolerant relative to the salt‐sensitive M. sinensis accession was mainly associated with non‐stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP‐ME.
  相似文献   

6.
Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2‐type zinc‐finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA‐mediated ROS‐scavenging capacity of the SlZF3‐overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein–protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP‐mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt‐stress tolerance.  相似文献   

7.
In many eukaryotes, endoplasmic reticulum (ER ) stress activates the unfolded protein response (UPR ) via the transmembrane endoribonuclease IRE 1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE 1 (CrIRE 1 ) and characterized two independent knock‐down alleles of this gene. CrIRE 1 is similar to IRE 1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc‐finger domain at the C terminus. CrIRE 1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N‐terminal region of CrIRE 1 fused to the cytosolic C‐terminal region of yeast Ire1p rescued the yeast ?ire1 mutant. Both allelic ire1 knock‐down mutants ire1‐1 and ire1‐2 were much more sensitive than their parental strain CC ‐4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC ‐4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS ) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE 1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE 1 is highly conserved during the evolutionary history.  相似文献   

8.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

9.
Excess soluble salts in soil are harmful to the growth and development of most plants. Evidence is emerging that the plant cell wall is involved in sensing and responding to salt stress, but the underlying mechanisms are not well understood. We reveal that the histone acetyltransferase General control non‐repressed protein 5 (GCN5) is required for the maintenance of cell wall integrity and salt stress tolerance. The levels of GCN5 mRNA are increased in response to salt stress. The gcn5 mutants exhibited severe growth inhibition and defects in cell wall integrity under salt stress conditions. Combining RNA sequencing and chromatin immunoprecipitation assays, we identified the chitinase‐like gene CTL1, polygalacturonase involved in expansion‐3 (PGX3) and MYB domain protein‐54 (MYB54) as direct targets of GCN5. Acetylation of H3K9 and H3K14 mediated by GCN5 is associated with activation of CTL1, PGX3 and MYB54 under salt stress. Moreover, constitutive expression of CTL1 in the gcn5 mutant restores salt tolerance and cell wall integrity. In addition, the expression of the wheat TaGCN5 gene in Arabidopsis gcn5 mutant plants complemented the salt tolerance and cell wall integrity phenotypes, suggesting that GCN5‐mediated salt tolerance is conserved between Arabidopsis and wheat. Taken together, our data indicate that GCN5 plays a key role in the preservation of salt tolerance via versatile regulation in plants.  相似文献   

10.
11.
12.
为探索苦楝应对盐胁迫的响应机制,该文以1年生苦楝(Melia azedarach)实生苗为材料,在盆栽条件下设置中性盐Na_2SO_4和碱性盐Na_2CO_33个盐浓度(200、400、600 mmol·L~(-1))处理40 d,研究苦楝的抗盐碱水平及在不同程度盐碱胁迫条件下的生长及光合生理变化。结果表明:随着盐浓度的提高,苦楝的苗高、地径和生物量的增长量均呈现下降趋势,且碱性盐胁迫条件下降程度更大,盐胁迫提高苦楝的根冠比。处理10 d时,苦楝幼苗的所有光合指标随中性盐和碱性盐浓度的提高呈相似的下降特征,碱性盐胁迫条件下的降低幅度显著大于中性盐胁迫,且随处理时间的增加,中性盐和碱性盐处理下苦楝幼苗的净光合速率和蒸腾速率显著降低。随着盐浓度的提高,苦楝的叶绿素含量呈现下降趋势,200 mmol·L~(-1)盐胁迫对叶绿素含量影响较小,400、600 mmol·L~(-1)盐胁迫均对叶绿素含量有显著影响。600 mmol·L~(-1)碱性盐胁迫条件下,苦楝叶片相对电导率和饱和水分亏缺最高,显著高于其余处理。同等浓度下,碱性盐胁迫的苦楝叶片相对电导率和饱和水分亏缺显著高于中性盐胁迫处理。综上结果认为,苦楝具有一定的耐盐碱能力,碱性盐比中性盐对苦楝幼苗的影响更大。  相似文献   

13.
The NHX‐type cation/H+ transporters in plants have been shown to mediate Na+(K+)/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5′‐ and 3′‐UTR and coding regions, except for a 342‐bp segment encoding 114 amino acids (L272 to Q385) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+‐limited salt‐stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition.  相似文献   

14.
15.
Ablotlc stress, such as salt, drought and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxldaae (APX), catalaae (CAT), glutathione peroxldaae (GPX) and peroxiredoxina (Prxa). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. located at chloroplast. Overexpression of SsPrxQ In Arabidopsis leads to an increase In salt and low-temperature tolerance.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号