首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the plant Dicer‐like (DCL) protein family are the critical components of the RNA‐silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non‐host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX‐GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.  相似文献   

3.
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology‐dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock‐out mutants in RAD51B, one of the Rad51 paralogs of Athaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B‐dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double‐stranded breaks (measured as γ‐H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S‐phase, and is ATM‐independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non‐transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double‐stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single‐stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.  相似文献   

4.
5.
6.
7.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

8.
Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid‐localized pentatricopeptide repeat (PPR) protein with a small MutS‐related domain, is required for maturation of the 23S–4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5′ end of the 23S–4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA ‘footprint’ associated with this site in sot1 mutants. We found that more than half of the 23S–4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5′ and 3′ ends, and that the endonucleolytic cleavage product normally released from the 5′ end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5′ extremity of the 23S–4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5′ and 3′ ends.  相似文献   

9.
Agrobacterium genetically transforms plants by transferring and integrating T‐(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus‐tagged VirE2 or Venus‐tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1–Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY‐2 protoplasts, regardless of whether VirE2 was co‐expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium‐mediated transformation or VirE2 subcellular localization.  相似文献   

10.
Pattern‐triggered immunity (PTI) is broad spectrum and manipulation of PTI is believed to represent an attractive way to engineer plants with broad‐spectrum disease resistance. PTI is activated upon perception of microbe‐associated molecular patterns (MAMPs) by pattern‐recognition receptors (PRRs). We have recently demonstrated that the L‐type lectin receptor kinase‐VI.2 (LecRK‐VI.2) positively regulates Arabidopsis thaliana PTI. Here we show through in vitro pull‐down, bimolecular fluorescence complementation and co‐immunoprecipitation analyses that LecRK‐VI.2 associates with the PRR FLS2. We also demonstrated that LecRK‐VI.2 from the cruciferous plant Arabidopsis remains functional after interfamily transfer to the Solanaceous plant Nicotiana benthamiana. Wild tobacco plants ectopically expressing LecRK‐VI.2 were indeed more resistant to virulent hemi‐biotrophic and necrotrophic bacteria, but not to the fungal pathogen Botrytis cinerea suggesting that, as with Arabidopsis, the LecRK‐VI.2 protective effect in N. benthamiana is bacteria specific. Ectopic expression of LecRK‐VI.2 in N. benthamiana primed PTI‐mediated reactive oxygen species production, mitogen‐activated protein kinase (MAPK) activity, callose deposition and gene expression upon treatment with the MAMP flagellin. Our findings identified LecRK‐VI.2 as a member of the FLS2 receptor complex and suggest that heterologous expression of components of PRR complexes can be used as tools to engineer plant disease resistance to bacteria.  相似文献   

11.
Genome editing facilitated by Cas9‐based RNA‐guided nucleases (RGNs) is becoming an increasingly important and popular technique for reverse genetics in both model and non‐model species. So far, RGNs were mainly applied for the induction of point mutations, and one major challenge consists in the detection of genome‐edited individuals from a mutagenized population. Also, point mutations are not appropriate for functional dissection of non‐coding DNA. Here, the multiplexing capacity of a newly developed genome editing toolkit was exploited for the induction of inheritable chromosomal deletions at six different loci in Nicotiana benthamiana and Arabidopsis. In both species, the preferential formation of small deletions was observed, suggesting reduced efficiency with increasing deletion size. Importantly, small deletions (<100 bp) were detected at high frequencies in N. benthamiana T0 and Arabidopsis T2 populations. Thus, targeting of small deletions by paired nucleases represents a simple approach for the generation of mutant alleles segregating as size polymorphisms in subsequent generations. Phenotypically selected deletions of up to 120 kb occurred at low frequencies in Arabidopsis, suggesting larger population sizes for the discovery of valuable alleles from addressing gene clusters or non‐coding DNA for deletion by programmable nucleases.  相似文献   

12.
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.  相似文献   

13.
14.
15.
Nonsense‐mediated mRNA decay (NMD) is a eukaryotic process that targets selected mRNAs for destruction, for both quality control and gene regulatory purposes. SMG1, the core kinase of the NMD machinery in animals, phosphorylates the highly conserved UPF1 effector protein to activate NMD. However, SMG1 is missing from the genomes of fungi and the model flowering plant Arabidopsis thaliana, leading to the conclusion that SMG1 is animal‐specific and questioning the mechanistic conservation of the pathway. Here we show that SMG1 is not animal‐specific, by identifying SMG1 in a range of eukaryotes, including all examined green plants with the exception of A. thaliana. Knockout of SMG1 by homologous recombination in the basal land plant Physcomitrella patens reveals that SMG1 has a conserved role in the NMD pathway across kingdoms. SMG1 has been lost at various points during the evolution of eukaryotes from multiple lineages, including an early loss in the fungal lineage and a very recent observable gene loss in A. thaliana. These findings suggest that the SMG1 kinase functioned in the NMD pathway of the last common eukaryotic ancestor.  相似文献   

16.
The proteasome is a nuclear‐cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit‐selective inhibitors and dual‐color fluorescent activity‐based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant–microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1‐1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild‐type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.  相似文献   

17.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

18.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

19.
Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin‐mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2 in reproductive development. Development of both male and female gametophytes was severely perturbed in plc2 mutants. Moreover, elevated auxin levels were observed in plc2 floral tissues, suggesting that the infertility of plc2 plants may be associated with increased auxin concentrations in the reproductive organs. We show that expression levels of the auxin reporters DR5:GUS and DR5:GFP were elevated in plc2 anthers and ovules. In addition, we found that expression of the auxin biosynthetic YUCCA genes was increased in plc2 plants. We conclude that PLC2 is involved in auxin biosynthesis and signaling, thus modulating development of both male and female gametophytes in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号