首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An l-xylulose reductase identified from the genome sequence of the filamentous fungus Neurospora crassa was heterologously expressed in Escherichia coli as a His(6) tag fusion protein, purified, and characterized. The enzyme may be used in the production of xylitol from the major pentose components of hemicellulosic waste, d-xylose and l-arabinose.  相似文献   

2.
3.
Summary Highest production of xylose Isomerase by Neurospora crassa grown with different carbon sources was at 0.014 U mg-1 with D-xylose. The enzyme exhibited maximum activity at pH 8.0 and 70°C and retained 100% activity at 45°C for 30 min at pH 8.0. It was activated by 8 mM Mg2+ whereas 2 mM Co2+ afforded protection against inactivation by heat. The K m for xylose was 10 mM and 22 mM for xylose Isomerase and xylose reductase respectively at 28°C and pH 7.0. This is the first report on the presence of xylose isomerase in N. crassa and the existence of two different pathways for the utilization of D-xylose.  相似文献   

4.
Wang X  Fang B  Luo J  Li W  Zhang L 《Biotechnology letters》2007,29(9):1409-1412
The xylose reductase (XR) gene (xyl1) from Candida shehatae was cloned and expressed in Escherichia coli, and purified as a His6-tagged fusion protein. The recombinant XR had Km values for NADH than NADPH of 150 μM and 20 μM, respectively. The optimal reaction was at pH 6.5 and 35°C. The enzyme was specific for d-xylese.  相似文献   

5.
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)(-1)), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L(-1) h(-1) and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L(-1) h(-1); yield 59%).  相似文献   

6.

Background

CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this protein in its enzymatically active and stable form is highly desired and hence optimization of culture conditions and characterization of the related biochemical properties are essential to explore the significance of the enzyme in physiological, therapeutic, structural and transgenic research.

Results

High-level expression of the chloroplastic isoform of Pisum sativum CuZn-SOD was achieved at 18°C, upon isopropyl β-D-1-thiogalactopyranoside induction and the process was optimized for maximum recovery of the protein in its soluble (enzymatically active) form. Both crude and purified protein fractions display significant increase in activity following supplementation of defined concentration Cu (CuSO4) and Zn (ZnSO4). Yield of the purified recombinant protein was ~ 4 mg L−1 of culture volume and the bacterial biomass was ~ 4.5 g L−1. The recombinant pea chloroplastic SOD was found to possess nearly 6 fold higher superoxide dismutase activity and the peroxidase activity was also 5 fold higher as compared to commercially available CuZn-superoxide dismutase. The computational, spectroscopic and biochemical characterization reveals that the protein harbors all the characteristics features of this class of enzyme. The enzyme was found to be exceptionally stable as evident from pH and temperature incubation studies and maintenance of SOD activity upon prolonged storage.

Conclusions

Overexpression and purification strategy presented here describes an efficient protocol for the production of a highly active and stable CuZn-superoxide dismutase in its recombinant form in E. coli system. The strategy can be utilized for the large-scale preparation of active CuZn-superoxide dismutase and thus it has wide application in pharmaceutical industries and also for elucidating the potential of this protein endowed with exceptional stability and activity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0117-0) contains supplementary material, which is available to authorized users.  相似文献   

7.
Monellin is an intensely sweet-tasting protein present in the berry of Dioscoreophyllum cumminsii. Naturally occurring monellin (double chain monellin) is a heterodimer of two subunits commonly referred to as chain A and chain B. Monellin is a good model system for structural and dynamic studies of proteins. Single chain monellin has been generated by covalently linking the two subunits of naturally occurring double chain monellin, and has been used extensively for folding and unfolding studies, as well as for protein aggregation studies. There are, however, relatively few reports on such studies with double chain monellin. The primary difficulty associated with studies using double chain monellin appears to be the lack of a standard purification method. Here, a simple method for the purification of double chain monellin is presented. The genes encoding the two chains of monellin were cloned into a modified pETDUET vector under separate T7 promoters. The expression vector containing the genes of the two chains was expressed in E. coli BL21 Star (DE3). The expressed protein was purified using two steps of chromatography, ion exchange chromatography and gel filtration chromatography. This expression system consistently produced 40 mg of pure double chain monellin per litre of E. coli culture, in the correctly folded native state. The purity of the protein was confirmed by mass spectrometry and SDS-PAGE analysis. The purified protein was characterized using different spectroscopic methods, and the spectra obtained were in good agreement with the published spectra of naturally occurring double chain monellin.  相似文献   

8.
A xylose reductase (XR) gene was identified from the Neurospora crassa whole-genome sequence, expressed heterologously in Escherichia coli, and purified as a His6-tagged fusion in high yield. This enzyme is one of the most active XRs thus far characterized and may be used for the in vitro production of xylitol.  相似文献   

9.
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6–7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20–30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.  相似文献   

10.
The coding sequence of the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from a moderately pyrimethamine-resistant strain (HB3) of Plasmodium falciparum was assembled in a pUC expression vector. The coding sequence possesses unique Nco1 and Xba1 sites which flank 243 bp of the DHFR gene that include all point mutations thus far linked to pyrimethamine resistance. Wild-type (3D7) and highly pyrimethamine-resistant (7G8) TS-DHFRs were made from this vector by cassette mutagenesis using Nco1-Xba1 fragments from the corresponding cloned TS-DHFR genes. Catalytically active recombinant TS-DHFRs were expressed in Escherichia coli, albeit at low levels. Both TS and DHFR coeluted upon gel filtration and copurified upon affinity and anion exchange chromatography. Gel filtration and SDS-PAGE indicated that the enzyme was a dimer with identical 67-kDa subunits, characteristic of protozoan TS-DHFRs. Amino-terminal sequencing gave 10 amino acids which perfectly matched the sequence predicted from the nucleotide sequence. The recombinant TS-DHFR was purified to homogeneity by 10-formylfolate affinity chromatography followed by Mono Q FPLC. The inhibition properties of pyrimethamine toward the purified recombinant enzymes show that the point mutations are the molecular basis of pyrimethamine resistance in P. falciparum.  相似文献   

11.
The early enzymes of arginine biosynthesis in Neurospora crassa are localized in the mitochondrion and catalyze the conversion of glutamate to citrulline. The final conversion of citrulline to arginine occurs via two enzymatic steps in the cytoplasm. We have devised a method for the isolation and purification of three of the mitochondrial arginine biosynthetic enzymes from a single extract. Acetylglutamate kinase and acetylglutamyl-phosphate reductase (both products of the complex arg-6 locus) were purified to homogeneity and near homogeneity, respectively. The large catalytic subunit of carbamoyl-phosphate synthetase was also purified to homogeneity. The three enzymes were resolved into separate fractions by chromatography on three dye-ligand affinity resins, which are specific for nucleotide binding enzymes and have a high protein binding capacity. High performance liquid chromatography was employed in the final stages of purification and was extremely effective in fractionating both acetylglutamate kinase and acetylglutamyl-phosphate reductase from proteins with very similar properties, which were not removed by other techniques. The purified proteins were used to raise specific antisera against these proteins. Acetylglutamate kinase and acetylglutamyl-phosphate reductase were shown to be immunologically unrelated. This finding suggests that the arg-6 locus encompasses two nonoverlapping cistrons. The antisera raised against carbamoyl-phosphate synthetase has been shown to cross-react with related enzymes in Saccharomyces cerevisiae, Escherichia coli, and rat liver (Ness, S. A., and Weiss, R. L. (1985) J. Biol. Chem. 260, 14355-14362). Acetylglutamate kinase is a regulatory enzyme and has been shown to be feedback-inhibited by arginine. We have determined the submitochondrial localization of acetylglutamate kinase and the second arg-6 product, acetylglutamyl-phosphate reductase. Both enzymes were shown to be soluble matrix enzymes. We discuss the relevance of this finding with respect to possible mechanisms for end product inhibition of a mitochondrial enzyme by a cytoplasmic effector.  相似文献   

12.
13.
14.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

15.
16.
The ATP-dependent phosphorylation of riboflavin to FMN by flavokinase is the key step in flavin biosynthesis. Flavokinase has been purified from a fungal source for the first time. The enzyme purified from a cell wall lacking mutant of Neurospora crassa, slime, is a monomer of M(r) 35.5 kDa with maximal activity at alkaline pH and high temperature (55 degrees C). The K(m) for both substrates is the lowest reported for flavokinase from any source so far (120 nM for riboflavin and 210 nM for MgATP2-). The enzyme exhibits preference for Mg2+ over Zn2+ as the essential activator and is also significantly activated by several cations. Activation by orthophosphate may be physiologically relevant for the intracellular regulation of flavokinase.  相似文献   

17.
为进一步提高菊粉酶在生物技术领域的应用,研究了来源于马克斯克鲁维酵母Kluyveromyces marxianus YX01的菊粉酶性质。通过在毕赤酵母GS115宿主细胞中异源表达该菊粉酶基因(inu),获得了一种外切型菊粉酶,经聚丙烯酰胺凝胶电泳(SDS-PAGE)验证其分子量为86.0 k Da。进一步在该菊粉酶上增加6个His标签,采用聚乙二醇(PEG)20 000透析浓缩和Ni-NTA Agarose静态亲和吸附作用的方法,完成菊粉酶的分离纯化,纯化倍数和酶回收率分别为3.6和33.1%。比较发现粗酶液与纯酶的酶学性质相似,且菊粉酶的最适反应温度为60℃,最适p H值为4.62,并测得该酶的Km和Vmax值,以菊粉为底物时,Km和Vmax值分别为80.53 g/L和4.49 g/(L·min);以蔗糖底物时,Km和Vmax值分别为183.10 g/L和20.20 g/(L·min)。金属离子Mn2+、Ca2+、Cu2+、Zn2+和Fe2+对酶活力具有不同程度的抑制作用,其中Cu2+、Zn2+和Fe2+的抑制作用最为显著。这些研究为进一步提高菊粉酶在工业化的应用奠定了基础。  相似文献   

18.
19.
Purification and characterization of arginase from Neurospora crassa   总被引:4,自引:0,他引:4  
We have purified an enzymatically active form of arginase from a wild-type strain of Neurospora crassa to homogeneity. The enzyme has a subunit molecular weight of 38,300 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native protein migrated as a hexamer during gel-filtration chromatography with an apparent molecular weight of 266,000. The enzyme exhibited hyperbolic kinetics at pH 9.5 with an apparent Km for arginine of 131 mM. Antiserum was prepared against the purified enzyme and used to demonstrate the existence of three cross-reactive proteins in crude extracts of wild-type N. crassa. One of these proteins corresponded to the purified protein, whereas the other two were of molecular weights 41,700 and 26,800, respectively. Using the same antiserum, we found that rat liver, but not rat kidney, contains immunoreactive material. We also detected two proteins in extracts of Saccharomyces cerevisiae that were weakly cross-reactive with the antiserum. These data provide evidence for the existence of multiple forms of arginase in fungi as well as in mammals.  相似文献   

20.
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His6-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His6-tagged rNC-CDH1 was purified through a one-step Ni–NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 7451 IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS–PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25–70 °C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The Km value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. kcat remains relatively constant when the chain length changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号