首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that progesterone (10 pM-10 nM) and progesterone covalently bound to bovine serum albumin (P-CMO BSA; 100 pM-1 microM) rapidly increased (within 5 s) the cytosolic free Ca(2+) concentration and inositol 1,4,5 trisphosphate (InsP(3)) formation in confluent female and male rat osteoblasts via a pertussis toxin-insensitive G-protein. The activation of G-proteins coupled to effectors such as phospholipase C (PLC) is an early event in the signal transduction pathway leading to InsP(3) formation. We used antibodies against the various PLC isoforms to show that only PLC-beta1 and PLC-beta 3 were involved in the Ca(2+) mobilization and InsP(3) formation induced by both progestins in female and male osteoblasts, whereas PLC-beta 2, PLC-gamma 1, and PLC-gamma 2 were not. We also used antibodies against the subunits of heterotrimeric G-proteins to show that the activation of PLC-beta 1 and PLC-beta 3 by both progestins involved the G alpha q/11 subunit, which was insensitive to pertussis toxin, whereas G alpha i, G alpha s, and G beta gamma subunits were not. The membrane effects were independent of the concentration of nuclear progesterone receptor, because the concentration of nuclear progesterone receptors was lower in male than in female osteoblasts. These data suggest that progesterone and P-CMO BSA, which does not enter the cell, directly activate G-protein leading to the very rapid formation of second messengers without involving the nuclear receptor.  相似文献   

2.
The levels of expression of G-protein alpha(q/11) (Galpha(q/11)) subunits and PLC-beta(1-4), -gamma, and -delta(1) isoforms were quantified by Western blot analysis in order to establish their contribution to the patterns of PLC functioning reported here. Quantitative measurements of the levels of Galpha(q/11) subunits in each region were obtained by comparison with known amounts of Escherichia coli expressed recombinant Galpha(q) subunits. Quantitative analysis indicated that Galpha(q/11) subunits are abundant polypeptides in human brain, with values ranging from about 1200 ng/mg in cerebral cortex to close to 900 ng/mg of membrane protein in caudate. In cerebral cortical membranes, the PLC-beta(1) isoform was more abundant than in caudate membranes. The highest levels of PLC-beta(2) expression were detected in caudate membranes. PLC-beta(3) was little expressed, and there were no significant differences in the relative values between both brain regions. Finally, the levels of the PLC-beta(4) isoform were significantly lower in caudate than in cortical membranes. It is concluded that although most of these data represent relative, not absolute, measures of protein levels within these regions, they contribute nonetheless to the significant differences observed in signaling capacities through the PLC system in both human brain regions.  相似文献   

3.
Activation of phospholipase Cbeta (PLCbeta) by G-proteins results in increased intracellular Ca(2+) and activation of protein kinase C. We have previously found that activated PLCbeta-Gbetagamma complex can be rapidly deactivated by Galpha(GDP) subunits without dissociation, which led to the suggestion that Galpha(GDP) binds to PLCbeta-Gbeta gamma and perturbs the activating interaction without significantly affecting the PLCbeta-Gbeta gamma binding energy. Here, we have used high pressure fluorescence spectroscopy to determine the volume change associated with this interaction. Since PLCbeta and G-protein subunits associate on membrane surfaces, we worked under conditions where the membrane surface properties are not expected to change. We also determined the pressure range in which the proteins remain membrane bound: PLCbeta binding was stable throughout the 1-2000 bars range, Gbeta gamma binding was stable only at high membrane concentrations, whereas Galpha(s)(GDP) dissociated from membranes above 1 kbar. High pressure dissociated PLCbeta-Gbeta gamma with a DeltaV = 34 +/- 5 ml/mol. This same volume change is obtained for a peptide derived from Gbeta which also activates PLCbeta. In the presence of Galpha(s)(GDP), the volume change associated with PLCbeta-Gbeta gamma interaction is reduced to 25 +/- 1 ml/mol. These results suggest that activation of PLCbeta by Gbeta gamma is conferred by a small (i.e., 3-15 ml/mol) volume element.  相似文献   

4.
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Galpha and Gbetagamma subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Galpha and Gbetagamma) following agonist-induced GPCR (alpha(2A)-adrenergic receptor; alpha(2A)-AR) activation in a cell-free assay system. alpha(2A)-AR membranes were reconstituted with the G-proteins (+/-hexahistidine-tagged) Galpha(i1) and Gbeta1gamma2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPgammaS. In the presence of Ni(2+)-coated agarose beads, the activated his-tagged Galpha(i1)his-[35S]GTPgammaS complex was captured on the Ni(2+)-presenting surface. When his-tagged Gbeta1gamma2 (Gbeta1gamma2his) was used with Galpha(i1), the [35S]GTPgammaS-bound Galpha(i1) was not present on the Ni(2+)-coated beads, but rather, it was separated from the beta1gamma2(his)-beads, demonstrating receptor-induced dissociation of Galpha and Gbetagamma subunits. Treatment of the reconstituted alpha(2A)-AR membranes containing Gbeta1gamma2his:Galpha(i1) with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Galpha(i1) from Gbeta1gamma2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling.  相似文献   

5.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

6.
Bone is a target tissue of progestins, but the mechanisms by which they act are still unclear. We examined the early (5-60 s) effects of progesterone and progesterone covalently bound to BSA (P-CMO BSA), which does not enter the cell, on the cytosolic free Ca(2+) concentration ([Ca(2+)]i) and the formation of inositol 1,4,5 trisphosphate (InsP3) and diacylglycerol (DAG) in confluent female and male rat osteoblasts. P-CMO BSA like free progesterone increased [Ca(2+)]i via Ca(2+) influx through L-type Ca(2+) channels and Ca(2+) mobilization from the endoplasmic reticulum. Both progestins increased InsP(3) and DAG formation within 10 s, and the increase was blocked by phospholipase C inhibitors (neomycin and U-73122). Progesterone and P-CMO BSA mobilized calcium from the endoplasmic reticulum via the activation of a phospholipase C linked to a pertussis toxin-insensitive G-protein in both osteoblast types, and this process was controlled by protein kinase C. Neither progestin had any effect on cAMP formation in male and female osteoblasts. The membrane effects were not blocked by a progesterone nuclear antagonist. They were independent of the concentration of nuclear receptors and not linked to gender. Thus, progesterone appears to act in female and male rat osteoblasts via unconventional cell-surface receptors which belong to the class of membrane receptors coupled to phospholipase C via a pertussis toxin-insensitive G-protein. The bifurcating pathways leading to the formation of InsP(3) and DAG may provide a certain flexibility in controlling cell responses, both by their nature and by their rates of formation and degradation.  相似文献   

7.
8.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

9.
Phosphatidylinositol-specific phospholipase C-betas (PLC-betas) are the only PLC isoforms that are regulated by G protein subunits. To further understand the regulation of PLC-beta(2) by G proteins and the functional roles of PLC-beta(2) structural domains, we tested whether the separately expressed amino and carboxyl halves of PLC-beta(2) could associate to form catalytically active enzymes as two polypeptides, and we explored how the complexes thus formed would be regulated by G protein betagamma subunits (Gbetagamma). We expressed cDNA constructs encoding PLC-beta(2) fragments of different lengths in COS-7 cells and demonstrated by coimmunoprecipitation that the coexpressed fragments could assemble and functionally reconstitute an active PLC-beta(2). The pleckstrin homology domain of PLC-beta(2) was required for its targeting to the membrane and for substrate hydrolysis. Reconstituted enzymes that contained the linker region that joins the two catalytic domains were as active or more active than the wild-type PLC-beta(2). When the linker region was removed, basal PLC-beta(2) enzymatic activity was increased further, suggesting that the linker region exerts an inhibitory effect on basal PLC-beta(2) activity. The reconstituted enzymes, like wild-type PLC-beta(2), were activated by Gbetagamma; when the C-terminal region was present in these constructs, they were also activated by Galpha(q). Gbetagamma and Galpha(q) activated these PLC-beta(2) constructs equally in the presence or absence of the linker region. We conclude that the linker region is an inhibitory element in PLC-beta(2) and that Gbetagamma and Galpha(q) do not stimulate PLC-beta(2) through easing the inhibition of enzymatic activity by the linker region.  相似文献   

10.
Activation of phospholipase C-beta (PLC-beta) by G protein-coupled receptors typically results in rapid but transient second messenger generation. Although PLC-beta deactivation may contribute to the transient nature of this response, the mechanisms governing PLC-beta deactivation are poorly characterized. We investigated the involvement of protein kinase C (PKC) in the termination of PLC-beta activation induced by endogenous P2Y(2) purinergic receptors and transfected M(3) muscarinic acetylcholine receptors (mAChR) in Chinese hamster ovary cells. Activation of P2Y(2) receptors causes Galpha(q/11) to associate with PLC-beta3, whereas M(3) mAChR activation causes Galpha(q/11) to associate with both PLC-beta1 and PLC-beta3 in these cells. Phosphorylation of PLC-beta3, but not PLC-beta1, is induced by activating either P2Y(2) receptors or M(3) mAChR. We demonstrate that PKC rather than protein kinase A mediates the G protein-coupled receptor-induced phosphorylation of PLC-beta3. The PKC-mediated phosphorylation of PLC-beta3 diminishes the interaction of Galpha(q/11) with PLC-beta3, thereby contributing to the termination PLC-beta3 activity. These findings indicate that the distinct temporal profiles of PLC activation by P2Y(2) receptors and mAChR may arise from the differential activation of PLC-beta1 and PLC-beta3 by the receptors, coupled with a selective PKC-mediated negative feedback mechanism that targets PLC-beta3 but not PLC-beta1.  相似文献   

11.
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands.Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.  相似文献   

12.
We examined the notion that sequestration of G protein subunits by binding to caveolin impedes G protein reassociation and leads to transient, G protein-specific desensitization of response in dispersed smooth muscle cells. Cholecystokinin octapeptide (CCK-8) and substance P (SP) were used to activate G(q/11), cyclopentyl adenosine (CPA) was used to activate G(i3), and acetylcholine (ACh) was used to activate both G(q/11) and G(i3) via m3 and m2 receptors, respectively. CCK-8 and SP increased only Galpha(q/11), and CPA increased only Galpha(i3) in caveolin immunoprecipitates; caveolin and other G proteins were not increased. ACh increased both Galpha(q/11) and Galpha(i3) in a time- and concentration-dependent fashion: only Galpha(q/11) was increased in the presence of an m2 antagonist, and only Galpha(i3) was increased in the presence of an m3 antagonist. To determine whether transient G protein binding to caveolin affected subsequent responses mediated by the same G protein, PLC-beta activity was measured in cells stimulated sequentially with two different agonists that activate either the same or a different G protein. After treatment of the cells with ACh and an m2 antagonist, the phospholipase C-beta (PLC-beta) response to CCK-8 and SP, but not CPA, was decreased; conversely, after treatment of the cells with ACh and an m3 antagonist, the PLC-beta response to CPA, but not CCK-8 or SP, was decreased. Similarly, after treatment with CCK-8 or SP, the PLC-beta response mediated by G(q/11) only was decreased, whereas after treatment with CPA, the PLC-beta response mediated by G(i3) only was decreased. A caveolin-binding Galpha(q/11) fragment blocked the binding of activated Galpha(q/11) but not Galpha(i3) to caveolin-3 and prevented desensitization of the PLC-beta response mediated only by other G(q/11)-coupled receptors. A caveolin-binding Galpha(i3) fragment had the reverse effect. Thus, transient binding of receptor-activated G protein subunits to caveolin impedes reassociation of the heterotrimeric species and leads to desensitization of response mediated by other receptors coupled to the same G protein.  相似文献   

13.
Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms. M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase were reduced by 2',5'-dideoxyadenosine (dd-Ado), a direct adenylyl cyclase inhibitor. On the other hand, overexpression of Galpha(s) or Epac1, a cyclic AMP-regulated guanine nucleotide exchange factor for Rap GTPases, enhanced M(3) mAChR-mediated PLC stimulation. Inactivation of Ras-related GTPases with clostridial toxins suppressed the M(3) mAChR responses. The inhibitory toxin effects were mimicked by expression of inactive Rap2B, but not of other inactive GTPases (Rac1, Ras, RalA, Rap1A, and Rap2A). Activation of the M(3) mAChR induced GTP loading of Rap2B, an effect strongly enhanced by overexpression of Galpha(s) and inhibited by dd-Ado. Overexpression of PLC-epsilon and PLC-beta1, but not PLC-gamma1 or PLC-delta1, enhanced M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase. In contrast, expression of a catalytically inactive PLC-epsilon mutant reduced PLC stimulation by the M(3) mAChR and abrogated the potentiating effect of Galpha(s). In conclusion, our findings suggest that PLC stimulation by the M(3) mAChR is a composite action of PLC-beta1 stimulation by Galpha(q) and stimulation of PLC-epsilon apparently mediated by G(s)-dependent cyclic AMP formation and subsequent activation of Rap2B.  相似文献   

14.
Heterotrimeric G protein signaling specificity has been attributed to select combinations of Galpha, beta, and gamma subunits, their interactions with other signaling proteins, and their localization in the cell. With few exceptions, the G protein subunit combinations that exist in vivo and the significance of these specific combinations are largely unknown. We have begun to approach these problems in HeLa cells by: 1) determining the concentrations of Galpha and Gbeta subunits; 2) examining receptor-dependent activities of two effector systems (adenylyl cyclase and phospholipase Cbeta); and 3) systematically silencing each of the Galpha and Gbeta subunits by using small interfering RNA while quantifying resultant changes in effector function and the concentrations of other relevant proteins in the network. HeLa cells express equimolar amounts of total Galpha and Gbeta subunits. The most prevalent Galpha proteins were one member of each Galpha subfamily (Galpha(s), Galpha(i3), Galpha(11), and Galpha(13)). We substantially abrogated expression of most of the Galpha and Gbeta proteins expressed in these cells, singly and some in combinations. As expected, agonist-dependent activation of adenylyl cyclase or phospholipase Cbeta was specifically eliminated following the silencing of Galpha(s) or Galpha(q/11), respectively. We also confirmed that Gbeta subunits are necessary for stable accumulation of Galpha proteins in vivo. Gbeta subunits demonstrated little isoform specificity for receptor-dependent modulation of effector activity. We observed compensatory changes in G protein accumulation following silencing of individual genes, as well as an apparent reciprocal relationship between the expression of certain Galpha(q) and Galpha(i) subfamily members. These findings provide a foundation for understanding the mechanisms that regulate the adaptability and remarkable resilience of G protein signaling networks.  相似文献   

15.
16.
In mouse periaqueductal gray matter (PAG) membranes, the mu-opioid receptor (MOR) coprecipitated the alpha-subunits of the Gi/o/z/q/11 proteins, the Gbeta1/2 subunits, and the regulator of G-protein signaling RGS9-2 and its partner protein Gbeta5. RGS7 and RGS11 present in this neural structure showed no association with MOR. In vivo intracerebroventricular injection of morphine did not alter MOR immunoreactivity, but 30 min and 3 h after administration, the coprecipitation of Galpha subunits with MORs was reduced by up to 50%. Furthermore, the association between Galpha subunits and RGS9-2 proteins was increased. Twenty-four hours after receiving intracerebroventricular morphine, the Galpha subunits left the RGS9-2 proteins and re-associated with the MORs. However, doses of the opioid able to induce tolerance promoted the stable transfer of Galpha subunits to the RGS9-2 control. This was accompanied by Ser phosphorylation of RGS9-2 proteins, which increased their co-precipitation with 14-3-3 proteins. In the PAG membranes of morphine-desensitized mice, the capacity of the opioid to stimulate G-protein-related guanosine 5'-O-(3-[35S]thiotriphosphate) binding as well as low Km GTPase activity was attenuated. The in vivo knockdown of RGS9-2 expression prevented morphine from altering the association between MORs and G-proteins, and tolerance did not develop. In PAG membranes from RGS9-2 knockdown mice, morphine showed full capacity to activate G-proteins. Thus, the tolerance that develops following an adequate dose of morphine is caused by the stabilization and retention of MOR-activated Galpha subunits by RGS9-2 proteins. This multistep process is initiated by the morphine-induced transfer of MOR-associated Galpha subunits to the RGS9-2 proteins, followed by Ser phosphorylation of the latter and their binding to 14-3-3 proteins. This regulatory mechanism probably precedes the loss of MORs from the cell membrane, which has been observed with other opioid agonists.  相似文献   

17.
The CNS is enriched in phosphoinositide-specific phospholipase C (PLC) and in the G proteins linked to its activation. Although the regional distributions of these signaling components within the brain have been determined, neither their cell type-specific localizations (i.e., neuronal versus glial) nor the functional significance of their high expression has been definitively established. In this study, we have examined the expression of phosphoinositide signaling proteins in human NT2-N cells, a well characterized model system for CNS neurons. Retinoic acid-mediated differentiation of NT2 precursor cells to the neuronal phenotype resulted in five- to 15-fold increases in the expression of PLC-beta1, PLC-beta4, and Galpha(q/11) (the prime G protein activator of these isozymes). In contrast, the expression of PLC-beta3 and PLC-gamma1 was markedly reduced following neuronal differentiation. Similar alterations in cell morphology and in the expression of PLC-beta1, PLC-beta3, and Galpha(q/11) expression were observed when NT2 cells were differentiated with berberine, a compound structurally unrelated to retinoic acid. NT2-N neurons exhibited a significantly higher rate of phosphoinositide hydrolysis than NT2 precursor cells in response to direct activation of either G proteins or PLC. These results indicate that neuronal differentiation of NT2 cells is associated with dramatic changes in the expression of proteins of the phosphoinositide signaling system and that, accordingly, differentiated NT2-N neurons possess an increased ability to hydrolyze inositol lipids.  相似文献   

18.
Sphingosine-1-phosphate (S1P) induces an initial Ca(2+)-dependent contraction followed by a sustained Ca(2+)-independent, RhoA-mediated contraction in rabbit gastric smooth muscle cells. The cells coexpress S1P(1) and S1P(2) receptors, but the signaling pathways initiated by each receptor type and the involvement of one or both receptors in contraction are not known. Lentiviral vectors encoding small interfering RNAs were transiently transfected into cultured smooth muscle cells to silence S1P(1) or S1P(2) receptors. Phospholipase C (PLC)-beta activity and Rho kinase activity were used as markers of pathways mediating initial and sustained contraction, respectively. Silencing of S1P(1) receptors abolished S1P-stimulated activation of Galpha(i3) and partially inhibited activation of Galpha(i1), whereas silencing of S1P(2) receptors abolished activation of Galpha(q), Galpha(13), and Galpha(i2) and partially inhibited activation of Galpha(i1). Silencing of S1P(2) but not S1P(1) receptors suppressed S1P-stimulated PLC-beta and Rho kinase activities, implying that both signaling pathways were mediated by S1P(2) receptors. The results obtained by receptor silencing were corroborated by receptor inactivation. The selective S1P(1) receptor agonist SEW2871 did not stimulate PLC-beta or Rho kinase activity or induce initial and sustained contraction; when this agonist was used to protect S1P(1) receptors so as to enable chemical inactivation of S1P(2) receptors, S1P did not elicit contraction, confirming that initial and sustained contraction was mediated by S1P(2) receptors. Thus S1P(1) and S1P(2) receptors are coupled to distinct complements of G proteins. Only S1P(2) receptors activate PLC-beta and Rho kinase and mediate initial and sustained contraction.  相似文献   

19.
Galpha15 activates phospholipase Cbeta in response to the greatest variety of agonist-stimulated heptahelical receptors among the four Gq class G-protein alpha subunits expressed in mammals. Galpha15 is primarily expressed in hematopoietic cells in fetal and adult mice. We disrupted the Galpha15 gene by homologous recombination in embryonic stem cells to identify its biological functions. Surprisingly, hematopoiesis was normal in Galpha15(-/-) mice, Galpha15(-/-) Galphaq(-/-) double-knockout mice (which express only Galpha11 in most hematopoietic cells), and Galpha11(-/-) mice, suggesting functional redundancy in Gq class signaling. Inflammatory challenges, including thioglycolate-induced peritonitis and infection with Trichinella spiralis, stimulated similar responses in Galpha15(-/-) adults and wild-type siblings. Agonist-stimulated Ca(2+) release from intracellular stores was assayed to identify signaling defects in primary cultures of thioglycolate-elicited macrophages isolated from Galpha15(-/-) mice. C5a-stimulated phosphoinositide accumulation and Ca(2+) release was significantly reduced in Galpha15(-/-) macrophages. Ca(2+) signaling was abolished only in mutant cells pretreated with pertussis toxin, suggesting that the C5a receptor couples to both Galpha15 and Galphai in vivo. Signaling evoked by other receptors coupled by Gq class alpha subunits appeared normal in Galpha15(-/-) macrophages. Despite discrete signaling defects, compensation by coexpressed Gq and/or Gi class alpha subunits may suppress abnormalities in Galpha15-deficient mice.  相似文献   

20.
Characterization of the GRK2 binding site of Galphaq   总被引:1,自引:0,他引:1  
Heterotrimeric guanine nucleotide-binding proteins (G proteins) transmit signals from membrane bound G protein-coupled receptors (GPCRs) to intracellular effector proteins. The G(q) subfamily of Galpha subunits couples GPCR activation to the enzymatic activity of phospholipase C-beta (PLC-beta). Regulators of G protein signaling (RGS) proteins bind to activated Galpha subunits, including Galpha(q), and regulate Galpha signaling by acting as GTPase activating proteins (GAPs), increasing the rate of the intrinsic GTPase activity, or by acting as effector antagonists for Galpha subunits. GPCR kinases (GRKs) phosphorylate agonist-bound receptors in the first step of receptor desensitization. The amino termini of all GRKs contain an RGS homology (RH) domain, and binding of the GRK2 RH domain to Galpha(q) attenuates PLC-beta activity. The RH domain of GRK2 interacts with Galpha(q/11) through a novel Galpha binding surface termed the "C" site. Here, molecular modeling of the Galpha(q).GRK2 complex and site-directed mutagenesis of Galpha(q) were used to identify residues in Galpha(q) that interact with GRK2. The model identifies Pro(185) in Switch I of Galpha(q) as being at the crux of the interface, and mutation of this residue to lysine disrupts Galpha(q) binding to the GRK2-RH domain. Switch III also appears to play a role in GRK2 binding because the mutations Galpha(q)-V240A, Galpha(q)-D243A, both residues within Switch III, and Galpha(q)-Q152A, a residue that structurally supports Switch III, are defective in binding GRK2. Furthermore, GRK2-mediated inhibition of Galpha(q)-Q152A-R183C-stimulated inositol phosphate release is reduced in comparison to Galpha(q)-R183C. Interestingly, the model also predicts that residues in the helical domain of Galpha(q) interact with GRK2. In fact, the mutants Galpha(q)-K77A, Galpha(q)-L78D, Galpha(q)-Q81A, and Galpha(q)-R92A have reduced binding to the GRK2-RH domain. Finally, although the mutant Galpha(q)-T187K has greatly reduced binding to RGS2 and RGS4, it has little to no effect on binding to GRK2. Thus the RH domain A and C sites for Galpha(q) interaction rely on contacts with distinct regions and different Switch I residues in Galpha(q).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号