首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of verapamil, a calcium antagonist, on lipolysis in isolated rat adipocytes were studied. Verapamil (100 microM) potentiated lipolysis due to dibutyryl cyclic AMP (Bt2cAMP) at submaximal concentrations, with or without extracellular Ca2+. Lipolysis due to 0.5 mM-Bt2cAMP was potentiated by verapamil in a dose-dependent manner up to 200 microM, whereas at concentrations higher than 100 microM the stimulatory effect of verapamil was progressively diminished with or without extracellular Ca2+. Verapamil showed only an inhibitory effect on lipolysis due to adrenaline (0.1-10 microM) or 3-isobutyl-1-methylxanthine (IBMX; 25-200 microM). The stimulatory effect of verapamil on lipolysis due to Bt2cAMP was not blocked by alpha-adrenergic antagonists. These results suggest (i) that verapamil has a biphasic effect on lipolysis due to Bt2cAMP and only an inhibitory effect on that due to adrenaline or IBMX, and (ii) that extracellular Ca2+ or alpha-adrenergic receptors are not involved in the action of verapamil.  相似文献   

2.
Adipocytes from spontaneously hypertensive rats (SHR) are not as responsive to isoproterenol or dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) stimulation compared with Sprague-Dawley or Wistar-Kyoto rats. Lipolytic activity in adipocytes from trained normotensive rats was enhanced in response to 1 microM isoproterenol and 0.5 mM dibutyryl cAMP but not in adipocytes from trained SHR. Decreases in isoproterenol-stimulated (1 microM) cAMP accumulation were evident in adipocytes from trained normotensive rats but not in adipocytes from trained SHR. Basal and agonist-induced lipolysis in fat cells isolated from both normotensive rats and SHR immediately following a 60-min run was increased in both sedentary and trained rats. Adenylate cyclase activity in fat cell membranes was blunted in sedentary and trained SHR both in the absence and presence of 100 microM 5'-guanylyl imidophosphate. No apparent differences existed in antagonist affinity of binding sites for the antagonist dihydroalprenolol in normal rats or SHR. Evidence for a change in affinity of agonist isoproterenol might be indicated based on the enhanced potency of isoproterenol to stimulate lipolysis in trained normal rats. beta-Adrenergic receptor density and antagonist affinity were not different in normotensive rats and SHR in response to training. However, displacement of [3H]dihydroalprenolol in adipocytes from SHR required greater concentrations of isoproterenol compared with adipocytes from normotensive rats, further suggestive of increased agonist affinity of binding sites in normal rats. These data suggest a postreceptor lesion of the lipolytic pathway in adipocytes from spontaneously hypertensive rats, possibly at the guanine nucleotide regulatory protein level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To assess the functional change in adenylyl cyclases (AC) associated with the diabetic state, we investigated AC-mediated relaxations and cAMP production in mesenteric arteries from rats with streptozotocin (STZ)-induced diabetes. The relaxations induced by the water-soluble forskolin (FSK) analog NKH477, which is a putative AC5 activator, but not by the beta-adrenoceptor agonist isoproterenol (Iso) and the AC activator FSK, were reduced in intact diabetic mesenteric artery. In diabetic rats, however, Iso-, FSK-, and NKH477-induced relaxations were attenuated in the presence of inhibitors of nitric oxide synthase and cyclooxygenase. To exclude the influence of phosphodiesterase (PDE), we also examined the relaxations induced by several AC activators in the presence of 3-isobutyl-1-methylxanthine (IBMX; a PDE inhibitor). Under these conditions, the relaxation induced by Iso was greatly impaired in STZ-diabetic rats. This Iso-induced relaxation was significantly attenuated by pretreatment with SQ-22536, an AC inhibitor, in mesenteric rings from age-matched controls but not in those from STZ-diabetic rats. Under the same conditions, the relaxations induced by FSK or NKH477 were impaired in STZ-diabetic rats. Neither FSK- nor A-23187 (a Ca2+ ionophore)-induced cAMP production was significantly different between diabetics and controls. However, cAMP production induced by Iso or NKH477 was significantly impaired in diabetic mesenteric arteries. Expression of mRNAs and proteins for AC5/6 was lower in diabetic mesenteric arteries than in controls. These results suggest that AC-mediated relaxation is impaired in the STZ-diabetic rat mesenteric artery, perhaps reflecting a reduction in AC5/6 activity.  相似文献   

4.
1. The concentrations of cyclic AMP were compared in islets of Langerhans isolated from the pancreases of normal female and pregnant rats and were higher in islets in pregnancy. 2. There was also a significant increase in adenylate cyclase activity in homogenates of islets from pregnant rats compared with those from normal rats. 3. Increased cyclic AMP concentration in islets from pregnant rats was reflected in increased protein kinase activity. When the cyclic AMP-dependent protein kinase activity was increased by 3-isobutyl-1-methylxanthine this stimulated activity was significantly greater in pregnancy. 4. Insulin-secretion studies with islets from normal and pregnant rats showed that theophylline or 3-isobutyl-1-methylxanthine, which raise intracellular cyclic AMP concentrations, caused a significantly greater insulin secretion in pregnancy. 5. It was also found that in the presence of a glucose concentration too low to stimulate insulin secretion, the latter could be induced if the cyclic AMP concentrations were raised sufficiently with 3-isobutyl-1-methylxanthine. 6. It is suggested that the higher cyclic AMP concentrations observed in islets in pregnancy mediate the greater insulin-secretory capacity, as well as the greater sensitivity of these islets to low glucose concentrations.  相似文献   

5.
Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of 3[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.  相似文献   

6.
The effect of increased levels of cAMP upon the differentiation of primary cultures of chick myo blasts has been investigated. 0.1 mM But2 cAMP or 1 mM 3-isobutyl-1-methylxanthine was added to the cultures 24 h after plating and maintained throughout the 70 h period of culture examined. Both reagents were found to markedly delay the time of fusion of the myoblasts but had no observable effect upon the increase in activity of creatine phosphokinase. Morphological examination of the cells revealed no difference in the relative numbers of myoblasts and fibroblasts between the control, But2 cAMP and 3-isobutyl-1-methylxanthine cultures, but the latter reagent appeared to cause some inhibition of cell proliferation.  相似文献   

7.
C J Malemud  R S Papay 《FEBS letters》1984,167(2):343-351
The effects of N6,O2'-dibutyryladenosine 3':5'-cyclic monophosphate (DBcAMP), 8-bromoadenosine 3':5'-cyclic monophosphate (8Br-cAMP), 3':5'-cyclic monophosphate (cAMP), L-isoproterenol and L-epinephrine on sulfated-proteoglycan synthesis by rabbit articular chondrocytes were compared. DBcAMP and 8Br-cAMP in the presence or absence of 3-isobutyl-1-methylxanthine (IBMX) stimulated sulfated-proteoglycan biosynthesis after 20 h of incubation. cAMP had no significant effect. Both DBcAMP and 8Br-cAMP increased the hydrodynamic size of the newly synthesized proteoglycan monomer (A1D1) relative to control cultures. By contrast, although isoproterenol and epinephrine stimulated total cAMP synthesis, neither stimulated sulfated-proteoglycan synthesis. Whereas intracellular cAMP accumulated after incubation with DBcAMP and 8Br-cAMP, this was not the case with isoproterenol whether IBMX was present or not. Thus, stimulation of sulfated-proteoglycan synthesis by cAMP analogues in chondrocyte cultures appears to be dependent on increased intracellular cAMP accumulation rather than total cAMP biosynthesis.  相似文献   

8.
A possible role for cyclic adenosine-3'-5'-monophosphate (cAMP) in islet cell replication was examined in collagenase-isolated pancreatic islets from Wistar rats of different age and different metabolic state (non-pregnant, pregnant, days 15.5-17.5). Islets obtained from pregnant rats released significantly more insulin in response to 10 mmol/l glucose (culture for 24 h) and their DNA synthesis (incorporation of [3H]thymidine into islet DNA) was doubled compared to islets from non-pregnant controls. Islets obtained from 4-6 days old rats showed a maximal stimulation of DNA synthesis after exposure to 0.1 mmol/l IBMX (3-isobutyl-1-methylxanthine) whereas the cAMP accumulation and the insulin biosynthesis measured in a subsequent short-term incubation were dose-dependent stimulated up to 1.0 mmol/l IBMX. In islets of 12 days old rats or 3 months old rats, however, IBMX did not stimulate DNA synthesis or insulin release measured during culture, although the cAMP content per islet was significantly enhanced after culture in the presence of IBMX.  相似文献   

9.
The possible role of adenosine 3',5'-cyclic monophosphate (cAMP)in olfactory transduction in the spiny lobster was investigatedusing radioimmunoassay of cAMP and intracellular recording.Application of forskolin or 1-isobutyl-3-methylxanthine increasedcAMP levels in intact sensilla containing the chemoreceptiveouter dendritic segments of the lobster olfactory receptor cell,thereby demonstrating adenylate cyclase and phosphodiesteraseactivity in the sensilla. A complex odor mixture and identifiedexcitatory odor molecules failed to stimulate the productionof cAMP, however In intracellular recordings, superfusion ofthe outer dendritic segments with forskolin, 1-isobutyl-3-methylxanthineand cyclic nucleotide analogs had no direct effect on odor-responsivecells. These compounds did cause infrequent enhancements (sixof 42 cells) of odor-evoked receptor potentials, but processesother than transduction are the most likely causes of this effect.We conclude that cAMP-dependent transduction mechanisms areunlikely to mediate most odor responses in lobsters, in contrastto transduction mechanisms in amphibians and rats.  相似文献   

10.
Adipocytes from adrenalectomized rats nearly lost their lipolytic response to glucagon concomitant with a 90% decrease in the number of glucagon receptors per cell. Quantitative analysis of the relation between amount of cell-bound glucagon and hormone-stimulated lipolysis revealed that the ability of the remaining 10% of glucagon receptors to induce lipolysis was not impaired. Binding of the beta-adrenergic antagonist [3H]dihydroalprenolol and maximal lipolysis induced by (-)-isoproterenol, (Bu)2cAMP, 3-isobutyl-1-methylxanthine, and adenosine deaminase were reduced only 10 to 20% after adrenalectomy. Furthermore, glucagon-stimulated cAMP production was greatly decreased in adrenalectomized animals, but isoproterenol-stimulated cAMP production was not. Hydrocortisone replacement in adrenalectomized rats only partially prevented the loss of glucagon receptors and glucagon effects on both cAMP production and lipolysis. These findings suggest that lipolytic cascade distal to hormone receptors was not greatly impaired in adipocytes after adrenalectomy and that the unresponsiveness of these cells to glucagon was mostly due to a marked reduction in the number of glucagon receptors.  相似文献   

11.
Unidirectional (36Cl) chloride fluxes across isolated and short-circuited frog skin were measured, with both sides bathed in low chloride solution. Transepithelial chloride influx was inhibited by exogenous cAMP as well as by substances enhancing its cellular concentration, such as epinephrine, isoproterenol, and 3-isobutyl-1-methylxanthine (IBMX). Epinephrine and isoproterenol addition resulted in an increase of transepithelial chloride outflux, but exogenous cAMP or IBMX had no significant effect on this unidirectional flux. Phenylephrine had no significant effect on influx or outflux. Carbonic anhydrase (CA) activity in extracts obtained from frog skin epithelium was inhibited by pretreatment with IBMX at 4-5 degrees C and prolonged exposure to cAMP at freezing point. cAMP or IBMX alone had no significant effects on CA activity. This catalytic activity was chloride insensitive and was abolished by 0.1 microM acetazolamide. Results suggest a Cl(-)-HCO3- exchange inhibition by cAMP via carbonic anhydrase inactivation. Chloride outflux stimulation by beta-adrenergic agonists does not seem to depend solely on an increase in cAMP concentration.  相似文献   

12.
Incorporation of [32P]Pi into phosphatidic acid and phosphatidylinositol of hamster epididymal adipocytes was partially inhibited by 3-isobutyl-1-methylxanthine. This effect of 3-isobutyl-1-methylxanthine was antagonized by isopropyl-N6-phenyladenosine but not by 2',5'-dideoxyadenosine, prostaglandin E1 or clonidine. N6-Phenylisopropyladenosine did not affect incorporation of [32P]Pi into phosphatidic acid or phosphatidylinositol when 3-isobutyl-1-methylxanthine was not present. In contrast with 3-isobutyl-1-methylxanthine inhibition of [32P]Pi incorporation into phospholipids, which was blocked only by N6-phenylisopropyladenosine, accelerated lipolysis was blocked by prostaglandin E1, clonidine and 2',5'-dideoxyadenosine as well as by N6-phenylisopropyladenosine. Phospholipid labelling was also decreased in the presence of adenosine deaminase, but not in the presence of isoprenaline (isoproterenol). The stimulatory effect of N6-phenylisopropyladenosine on [32P]Pi incorporation into phospholipids in cells exposed to 3-isobutyl-1-methylxanthine was evident as soon as 3 min after addition of the adenosine analogue and maximum 10 min after its addition. As observed by others, [32P]Pi incorporation into phospholipids was increased by the alpha 1-selective agonist methoxamine. The stimulatory effect of methoxamine occurred with a time course similar to that of N6-phenylisopropyladenosine and was present at nearly equal magnitude in the absence or presence of 3-isobutyl-1-methylxanthine. The inhibitory effects of 3-isobutyl-1-methylxanthine and adenosine deaminase on phospholipid labelling are attributed to blockade of the action, or to the enzymic removal, of adenosine formed in and released from the fat-cells during their incubation. Supporting this view is the selective reversal of the actions of 3-isobutyl-1-methylxanthine and of adenosine deaminase by N6-phenylisopropyladenosine. These findings suggest an important role for endogenous adenosine in regulation of phospholipid turnover in adipocytes.  相似文献   

13.
Adenosine 3',5-cyclic monophosphate (cAMP) was shown to stimulate insulin secretion from electrically permeabilised islets of Langerhans incubated in Ca2+/EGTA buffers. cAMP-induced insulin secretion occurred in the presence of either sub-stimulatory (50 nM) or stimulatory (greater than 100 nM) concentrations of Ca2+. Similar effects on secretion were obtained in response to 8-bromo-cAMP (8-Br-cAMP) or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. Forskolin (0.2-20 microM) increased adenylate cyclase activity and enhanced insulin secretion from the permeabilised islets. These results suggest that, in electrically permeabilised islets, cAMP-induced insulin secretion is not dependent on changes in cytosolic Ca2+.  相似文献   

14.
In a perifusion system in the presence of 3-isobutyl-1-methylxanthine, forskolin stimulated secretion of not only cAMP but also 3, 5, 3'-triiodothyronine (T3) from rat thyroid glands. The increases in both cAMP and T3 were dose-dependent at forskolin concentrations of 2.0 X 10(-7)M to 2.0 X 10(-5)M. After perifusion for 4 h, tissue concentrations of cAMP also increased as a result of forskolin treatment. Since forskolin is regarded as a specific activator of the cAMP generating system, this observed forskolin stimulation of T3 secretion from perifused rat thyroid glands indicates that cAMP is involved in regulating thyroid hormone secretion.  相似文献   

15.
Parathyroid extract (PTE) as well as purified parathyroid hormone (PTH) activators of adenylate cyclase in bone and kidney, produced dose-dependent decreases in the induction of alkaline phosphatase activity by 5-iodo-2′-deoxyuridine in HeLa cells. However, the combination of PTE and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor which also inhibits the induction of alkaline phosphatase activity, in most cases produced less than additive inhibition of enzyme induction. PTE or PTH in concentrations of up to 10 times greater than that necessary to have maximal effects on the induction of alkaline phosphatase activity produced no increase in adenylate cyclase activity, nor did they increase intracellular cAMP concentrations. In addition, PTE did not potentiate the increase in cAMP concentration produced by IBMX. It thus appears that the inhibition of alkaline phosphatase activity by PTH is not mediated by cAMP.  相似文献   

16.
Stimulation of cyclic AMP (cAMP) accumulation in rat cortex slices by 1 microM forskolin (F) was markedly reduced (96%) by treatment with adenosine deaminase (ADA). The effect of ADA was progressively less at higher concentrations of F, but still inhibited the response by 50% at 100 microM F. ADA-mediated inhibition of the cAMP response to 1 microM F was completely reversed by 5 microM 2-chloroadenosine (CA), an ADA-resistant analogue. Stimulation by F (controls) and F plus CA (ADA treated) in cortex slices was significantly inhibited by 200 microM caffeine (CAF) and by 10 microM 8-phenyltheophylline. cAMP accumulation in ADA-treated cortex slices stimulated with CA at concentrations from 5 to 100 microM was markedly enhanced by 1 microM F. Neither ADA treatment nor 200 microM CAF significantly affected cAMP accumulation in slices stimulated by 1 microM vasoactive intestinal polypeptide or adenylate cyclase in membranes stimulated by 1 microM F. CAF (1 mM) did not significantly increase basal cAMP levels in cortex slices, whereas 1 mM 3-isobutyl-1-methylxanthine caused a significant 80% increase and 100 microM rolipram enhanced cAMP levels by 4.5-fold. F-stimulated cAMP accumulation (1 microM) in cortex slices was inhibited 98% by 1 mM CAF and 49% by 1 mM 3-isobutyl-1-methylxanthine, and was enhanced 2.5-fold by 100 microM rolipram. These data have been interpreted to indicate that the stimulation of cAMP accumulation in rat cortex slices by 1 microM F is predominantly due to synergistic interaction with endogenous adenosine and that the inhibition of this response by CAF is largely due to blockade of adenosine receptors.  相似文献   

17.
A specific and high throughput 96-well format bioassay for recombinant human relaxin (rhRLX) has been developed using human endometrial cells (NHE cells). rhRLX caused a time- and dose-dependent stimulation of cyclic AMP (cAMP) with 1/2 maximal activity of 3.56 +/- 0.65 ng/ml (n = 30). The range of the standard curve was 0.39 to 25 ng/ml with interplate precision of 17 and 22% CV for high and low controls respectively. The cAMP response requires forskolin and 3-isobutyl-1-methylxanthine, and is enhanced by prostaglandin E2 and F2 alpha. The NHE cells do not respond to A or B chains of rhRLX, or a whole array of hormones. Preincubation of rhRLX with specific monoclonal antibody completely abolished the cAMP response. This bioassay has been used to determine the biological activity of several manufactured lots of recombinant human relaxin.  相似文献   

18.
The actions of three different phosphodiesterase inhibitors, theophylline, 3-isobutyl-1-methylxanthine (IBMX) and Ro 20-1724 (Ro), on cellular cAMP and pepsinogen secretion from dispersed chief cells prepared from guinea pig stomach were examined. The relative order of potency for increasing cAMP and pepsinogen secretion was Ro greater than IBMX greater than theophylline. Ro, the most efficacious agent, caused a 17-fold increase in basal cAMP and a similar augmentation of the increase in cAMP caused by secretin or vasoactive intestinal peptide (VIP). Differential actions of these agents on the dose-response curves for secretin- and VIP-induced increases in cAMP suggest that chief cell receptors for these peptides are coupled to pools of cAMP that are acted upon by heterogeneous phosphodiesterases with varying sensitivities to inhibitors. Moreover, Ro, a selective inhibitor of low Km cAMP-specific phosphodiesterases, is the most potent and efficacious agent tested in this cell system.  相似文献   

19.
20.
It is established that the modulation of beta(3)-adrenoceptor function could be associated with impairment of lipolysis in white fat and be responsible for disturbed lipid metabolism. Though two isoforms of nitric oxide synthase (NOS) were reported in adipocytes, the role of nitric oxide (NO) in adipose tissue is still ambiguous. The present work was directed to study the interplay between NO production and beta-adrenoceptor/cyclic AMP (cAMP) pathway on lipid mobilization (glycerol and nonesterified fatty acids, NEFA) in cultures of rat adipocytes isolated from epididymal white adipose tissue. beta-Nonselective (isoprenaline) and beta(3)-selective (BRL-37344) agonists and the postadrenoceptor agents such as dibutyryl-cAMP, forskolin, and 3-isobutyl-1-methylxanthine significantly increased nitrite, glycerol, and NEFA levels with BRL-37344 being the most potent. Conversely, addition of beta-nonselective (propranolol) or beta(3)-selective (bupranolol) antagonist or the adenylyl cyclase inhibitor (SQ 22,536) significantly reduced beta-agonist-induced NO production and lipolysis. For beta-adrenoceptor agonists, antagonists, and their pairs, there was a positive correlation between medium nitrite and glycerol or NEFA with r(2) being 0.90 and 0.84, respectively. The possible relationship between NO and lipolysis was revealed after adipocyte treatment with nonspecific (N(omega)-nitro-l-arginine methyl ester, l-NAME) and specific (aminoguanidine) NOS inhibitors. Both l-NAME and aminoguanidine significantly inhibited the lipolytic effect of BRL-37344. Moreover, NO-donor (S-nitroso-N-acetylpenicillamine) at higher concentration increased basal glycerol and NEFA levels. 8-bromo-cyclic GMP had no effect on adipocyte lipolysis. These data suggest that beta-adrenergic lipolysis, specifically beta(3)-adrenoceptor effect, which is realized via the adenylyl cyclase/cAMP/protein kinase A signaling cascade, involves NO production downstream of beta(3)-adrenoceptor/cAMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号