首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of high-molecular-weight (HMW) hyaluronic acids (HAs) of 1.9 × 106 Da, 8 × 105 Da and 3 × 105 Da on the receptor-mediated functions of guinea pig peritoneal phagocytes were studied. HMW-HAs of 1.9 × 106 Da (HA190) and 8 × 105 Da (HA80) effectively inhibited the chemotactic activity of polymorphonuclear leukocytes (PMNs) for formyl-Met-Leu-Phe (fMLP). The degree of inhibition was dose-dependent and the concentrations of HA190 and HA80 required for 50% inhibition were 0.5–1.5 mg/ml and 1.5–2.5 mg/ml, respectively. HMW-HA of 3 × 105 Da (HA30) hardly affected the chemotaxis within a concentration range of 0.5–5.0 mg/ml. The phagocytic activities of PMNs and macrophages (Møs) for serum-opsonized zymosan (SOZ) and polystyrene latex particles were also inhibited by these HAs in a dose- and molecular-weight-dependent manner and HA190 was again the most inhibitory. By contrast, the release of lysosomal enzyme from Møs stimulated with SOZ was not significantly affected by HMW-HAs at any concentration used. Furthermore, the binding of [3H]fMLP with PMNs and the rosette formation of Møs with SOZ were not influenced by the presence of HMW-HAs. These findings suggested that the binding of HMW-HAs to the HA receptors on PMNs and Møs might produce certain intracellular signals which would be responsible for the suppression of the chemotaxis and the phagocytosis but not for the release of lysosomal enzyme. For the generation of such signals, higher-molecular-weight HMW-HAs would be more effective than lower one.  相似文献   

2.
Calcium-regulated exocytosis is required for cell membrane resealing   总被引:15,自引:7,他引:8       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1747-1758
Using confocal microscopy, we visualized exocytosis during membrane resealing in sea urchin eggs and embryos. Upon wounding by a laser beam, both eggs and embryos showed a rapid burst of localized Ca(2+)- regulated exocytosis. The rate of exocytosis was correlated quantitatively with successfully resealing. In embryos, whose activated surfaces must first dock vesicles before fusion, exocytosis and membrane resealing were inhibited by neurotoxins that selectively cleave the SNARE complex proteins, synaptobrevin, SNAP-25, and syntaxin. In eggs, whose cortical vesicles are already docked, vesicles could be reversibly undocked with externally applied stachyose. If cortical vesicles were undocked both exocytosis and plasma membrane resealing were completely inhibited. When cortical vesicles were transiently undocked, exposure to tetanus toxin and botulinum neurotoxin type C1 rendered them no longer competent for resealing, although botulinum neurotoxin type A was still ineffective. Cortical vesicles transiently undocked in the presence of tetanus toxin were subsequently fusion incompetent although to a large extent they retained their ability to redock when stachyose was diluted. We conclude that addition of internal membranes by exocytosis is required and that a SNARE-like complex plays differential roles in vesicle docking and fusion for the repair of disrupted plasma membrane.  相似文献   

3.
When isolated chromaffin granules were aggregated by synexin (a Ca2+-binding protein present in chromaffin and other secretory tissues) and then exposed to cis-unsaturated fatty acids at 37 degrees C, they fused together to form large vesicles. The fusion was monitored by phase and electron microscopy and by turbidity measurements on the granule suspension. Arachidonic acid was the most effective fusogen, whereas trans-unsaturated fatty acids, saturated fatty acids, detergents or lysolecithin were inactive. During fusion some of the epinephrine of the granules was released but the soluble core proteins remained trapped in the resulting vesicles. These vesicles swelled to enclose the maximum volume. Although this swelling could be inhibited by increasing the osmotic strength of the medium, it did not appear to depend on the chemiosmotic properties of the granule membranes as it was not influenced by ATP, a proton ionophore, or an anion transport inhibitor. The regulators of this in vitro fusion--Ca2+, synexin, and free, cis-unsaturated fatty acids--may be present in the cytoplasm of the chromaffin cell when it is stimulated to release epinephrine and granule proteins by exocytosis. Therefore, this fusion event may be the same that occurs between chromaffin granules undergoing compound exocytosis.  相似文献   

4.
Before exocytosis, vesicles must first become docked to the plasma membrane. The SNARE complex was originally hypothesized to mediate both the docking and fusion steps in the secretory pathway, but previous electron microscopy (EM) studies indicated that the vesicular SNARE protein synaptobrevin (syb) was dispensable for docking. In this paper, we studied the function of syb in the docking of large dense-core vesicles (LDCVs) in live PC12 cells using total internal reflection fluorescence microscopy. Cleavage of syb by a clostridial neurotoxin resulted in significant defects in vesicle docking in unfixed cells; these results were confirmed via EM using cells that were prepared using high-pressure freezing. The membrane-distal portion of its SNARE motif was critical for docking, whereas deletion of a membrane-proximal segment had little effect on docking but diminished fusion. Because docking was also inhibited by toxin-mediated cleavage of the target membrane SNAREs syntaxin and SNAP-25, syb might attach LDCVs to the plasma membrane through N-terminal assembly of trans-SNARE pairs.  相似文献   

5.
Fusion of synaptic vesicles with various target membranes was investigated on the cell-free model system that reflects the final step of exocytosis. Plasma membranes, synaptic vesicles and liposomes were used as acceptor membranes. The process of membrane fusion was triggered by Ca2+. We have demonstrated that synaptic vesicles are prone to fuse with liposomes in buffer solution. This process was strongly dependent on ionic force of medium and phospholipid composition of liposomes. Cytosolic proteins of synaptosomes inhibited the fusion of synaptic vesicles with liposomes, while these were required for the fusion of synaptic vesicles with native membrane structures. Trypsinolysis of acceptor membranes markedly inhibited the fusion response. It means protein components of target membrane are necessary for realization of the final step of exocytosis.  相似文献   

6.
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.  相似文献   

7.
Abstract: The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 µ M bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 m M methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of d -[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of d -[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by ∼50%, with each stimulus indicating that unlabeled vesicles with accumulated d -[3H]aspartate were competing with labeled vesicles for exocytosis. As d -[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and d -[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   

8.
Using immunohistochemistry at the conventional light, confocal and electron microscopic levels, we have demonstrated that rat stomach ECL cells store histamine and pancreastatin in granules and secretory vesicles, while histidine decarboxylase occurs in the cytosol. Furthermore the ECL cells display immunoreactivity for vesicular monoamine transporter type 2 (VMAT-2), synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2, cysteine string protein, synaptosomal-associated protein of 25 kDa, syntaxin and Munc-18. Using electron microscopy in combination with stereological methods, we have evidence to suggest the existence of both an exocytotic and a crinophagic pathway in the ECL cells. The process of exocytosis in the ECL cells seems to involve a class of proteins that promote or participate in the fusion between the granule/vesicle membrane and the plasma membrane. The granules take up histamine by VMAT-2 from the cytosol during transport from the Golgi zone to the more peripheral parts of the cells. As a result, they turn into secretory vesicles. As a consequence of stimulation (e.g., by gastrin), the secretory vesicles fuse with the cell membrane to release their contents by exocytosis. The crinophagic pathway was studied in hypergastrinemic rats. In the ECL cells of such animals, the secretory vesicles were found to fuse not only with the cell membrane but also with each other to form vacuoles. Subsequent lysosomal degradation of the vacuoles and their contents resulted in the development of lipofuscin bodies.  相似文献   

9.
10.
Formation of the fusion pore is a central question for regulated exocytosis by which secretory cells release neurotransmitters or hormones. Here, by dynamically monitoring exocytosis of large vesicles (2–7 μm) in astrocytes with two-photon microscopy imaging, we found that the exocytotic fusion pore was generated from the SNARE-dependent fusion at a ring shape of the docked plasma-vesicular membrane and the movement of a fusion-produced membrane fragment. We observed two modes of fragment movements, 1) a shift fragment that shifted to expand the fusion pore and 2) a fall-in fragment that fell into the collapsed vesicle to expand the fusion pore. Shift and fall-in modes are associated with full and partial collapses of large vesicles, respectively. The astrocytic marker, sulforhodamine 101, stained the fusion-produced membrane fragment more brightly than FM 1-43. Sulforhodamine 101 imaging showed that double fusion pores could simultaneously occur in a single vesicle (16% of large vesicles) to accelerate discharge of vesicular contents. Electron microscopy of large astrocytic vesicles showed shift and fall-in membrane fragments. Two modes of fusion pore formation demonstrate a novel mechanism underlying fusion pore expansion and provide a new explanation for full and partial collapses of large secretory vesicles.  相似文献   

11.
The fusion of synaptic vesicles with the plasma membrane during exocytosis can be recorded by membrane capacitance measurements under voltage-clamp conditions. These measurements enable high time-resolution quantitation of exocytosis. The present study was carried out using the above technique to elucidate the effects of various polyunsaturated fatty acids on exocytosis in a neuroendocrine cell, the rat pheochromocytoma-12 (PC12) cell. External application of eicosapentaenoic acid and arachidonic acid resulted in an increase in capacitance of PC12 cells, indicating fusion of secretory vesicles with cell membranes and exocytosis. In contrast, docosahexaenoic acid, linoleic acid, oleic acid, and vehicle control had no significant effect on capacitance. The above findings show differential effects of polyunsaturated fatty acids on exocytosis in PC12 cells. It is postulated that besides arachidonic acid, eicosapentaenoic acid could also play an important role in exocytosis and neurotransmitter release, in neurons and hormone-secreting cells. Wee-Liat Ong and Bin Jiang - These authors contributed equally to the work.  相似文献   

12.
Synaptotagmins (Syts) play a key role in the regulation of Ca(2+)-triggered exocytosis and membrane fusion events, two crucial events associated to the phagocytic process. In the present study, we investigated the role of Syt V, a regulator of focal exocytosis, in phagocytosis. In macrophages, Syt V is localized on recycling endosomes and on filopodia-like structures and is recruited to the nascent phagosomes independently of the phagocytic receptor engaged. Silencing of Syt V by RNA interference revealed a role for this protein for phagocytosis, particularly under conditions of high membrane demand. In contrast, silencing of Syt V had no effect on the recruitment of the lysosomal marker LAMP1 to phagosomes, indicating that phagosome maturation is not regulated by Syt V. Collectively, these results illustrate the importance of Syt V in the regulation of an important innate function of macrophages. Furthermore, our results are consistent with the concept that focal exocytosis of endocytic organelles is a key event in phagocytosis and suggest that Syt V regulates this process.  相似文献   

13.
Micafungin, a new echinocandin, inhibits fungal cell wall beta-glucan synthesis. We postulated micafungin and host phagocytic cells could act together in damaging fungi. Using the metabolic XTT assay, micafungin alone (0.01 and 0.10 microg/ml) inhibited Aspergillus fumigatus germlings by 48% and 61%, respectively. Polymorphonuclear neutrophils (PMNs) inhibited germlings by 53%. Micafungin at 0.01 or 0.10 microg/ml and PMNs resulted in additive inhibition, 82% and 99%, respectively. Monocyte-derived macrophage (MDM) monolayers inhibited germling growth by 66%; micafungin (0.01 or 0.10 microg/ml) alone inhibited by 32% and 42%, respectively. MDMs and micafungin (0.01 or 0.10 microg/ml) caused an additive inhibition of growth, 85% and 95%, respectively. Hyphae were generated by incubation of conidia for 24 h with or without micafungin. PMNs alone, added to hyphae, inhibited growth by 19% in the subsequent 20 h. Hyphae generated in the presence of micafungin (0.10 microg/ml) and subsequently cultured with micafungin for 24 h inhibited growth by 64%. PMNs plus micafungin resulted in 82% inhibition. Monocytes alone inhibited hyphal growth by only 5%. Hyphae produced in the presence of micafungin (0.01 microg/ml) and incubated again with micafungin for 24 h inhibited growth by 47%; combination with monocytes resulted in 62% inhibition. These data indicate that micafungin inhibits growth of tissue forms of A. fumigatus, and phagocytes and micafungin together have an additive effect. These findings support the thesis that the greater efficacy of micafungin in vivo compared with in vitro could be due to combined effect of phagocytic cells and micafungin.  相似文献   

14.
The final step in exocytosis is the fusion of synaptic vesicle membrane with the synaptosomal plasma membrane, leading to the release of the neurotransmitters. We have reconstituted this fusion event in vitro, using isolated synaptic vesicles and synaptosomal plasma membranes from the bovine brain. The membranes of synaptic vesicles were loaded with the lipid--soluble fluorescent probe octadecylrhodamine B at the concentration that resulted in self-quenching of its fluorescence. The vesicles were then incubated with synaptosomal plasma membranes at 37 degrees C and fusion was measured through the dilution-dependent de-quenching of the fluorescence of the probe. Synaptic vesicles by themselves did not fused with plasma membrane, only addition of ATP induced the fusion. W-7 and trifluoroperasine, the drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the ATP-induced fusion synaptic vesicles and synaptosomal plasma membranes. Our results indicate that the membrane fusion in the nerve terminals during exocytosis may be under direct control of calmodulin-dependent protein phosphorylation.  相似文献   

15.
Many cells utilize a GTP-dependent pathway to trigger exocytosis in addition to Ca(2+)-triggered exocytosis. However, little is known about the mechanism by which GTP triggers exocytosis independent of Ca(2+). We used dual-color evanescent field microscopy to compare the motion and fusion of large dense core vesicles stimulated by either mastoparan (Mas) in Ca(2+)-free conditions or high K(+) in the presence of Ca(2+). We demonstrate that Mas is hardly effective in triggering the fusion of the predocked vesicles but predominantly mobilizes cytosolic vesicles. In contrast, Ca(2+)-dependent exocytosis is largely due to predocked vesicles. Fusion kinetics analysis and carbon-fiber amperometry reveal that Mas induces a brief 'kiss-and-run' fusion and releases only a small amount of the cargo, whereas Ca(2+) stimulates a more persistent opening of the fusion pore and larger release of the contents. Furthermore, we show that Mas-released vesicles require a much shorter time to reach fusion competence once they approach the plasma membrane. Our data suggest the involvement of different mechanisms not only in triggering and fusion but also in the docking and priming process for Ca(2+)- and GTP-dependent exocytosis.  相似文献   

16.
Tear proteins are supplied by the regulated fusion of secretory vesicles at the apical surface of lacrimal gland acinar cells, utilizing trafficking mechanisms largely yet uncharacterized. We investigated the role of Rab27b in the terminal release of these secretory vesicles. Confocal fluorescence microscopy analysis of primary cultured rabbit lacrimal gland acinar cells revealed that Rab27b was enriched on the membrane of large subapical vesicles that were significantly colocalized with Rab3D and Myosin 5C. Stimulation of cultured acinar cells with the secretagogue carbachol resulted in apical fusion of these secretory vesicles with the plasma membrane. Evaluation of morphological changes by transmission electron microscopy of lacrimal glands from Rab27b(-/-) and Rab27(ash/ash)/Rab27b(-/-) mice, but not ashen mice deficient in Rab27a, showed changes in abundance and organization of secretory vesicles, further confirming a role for this protein in secretory vesicle exocytosis. Glands lacking Rab27b also showed increased lysosomes, damaged mitochondria, and autophagosome-like organelles. In vitro, expression of constitutively active Rab27b increased the average size but retained the subapical distribution of Rab27b-enriched secretory vesicles, whereas dominant-negative Rab27b redistributed this protein from membrane to the cytoplasm. Functional studies measuring release of a cotransduced secretory protein, syncollin-GFP, showed that constitutively active Rab27b enhanced, whereas dominant-negative Rab27b suppressed, stimulated release. Disruption of actin filaments inhibited vesicle fusion to the apical membrane but did not disrupt homotypic fusion. These data show that Rab27b participates in aspects of lacrimal gland acinar cell secretory vesicle formation and release.  相似文献   

17.
Synaptotagmin is considered a calcium-dependent trigger for regulated exocytosis. We examined the role of synaptotagmin VII (Syt VII) in the calcium-dependent exocytosis of individual lysosomes in wild-type (WT) and Syt VII knockout (KO) mouse embryonic fibroblasts (MEFs) using total internal reflection fluorescence microscopy. In WT MEFs, most lysosomes only partially released their contents, their membrane proteins did not diffuse into the plasma membrane, and inner diameters of their fusion pores were smaller than 30 nm. In Syt VII KO MEFs, not only was lysosomal exocytosis triggered by calcium, but all of these restrictions on fusion were also removed. These observations indicate that Syt VII does not function as the calcium-dependent trigger for lysosomal exocytosis. Instead, it restricts the kinetics and extent of calcium-dependent lysosomal fusion.  相似文献   

18.
The adenosine triphosphate (ATP) plays important roles under physiological and pathological conditions such as traumatic brain injury, neuroinflammation and neuropathic pain. In the present study, we set out to study the role of lysosomal vesicles on ATP release from the dorsal root ganglion neurons. We found that the lysosomal vesicles, which contain the quinacrine-positive fluorescence and express the vesicular nucleotide transporter (VNUT), were localized within the soma and growth cone of the cultured dorsal root ganglion neurons. In addition, the number of the quinacrine staining was decreased by application of lysosomal exocytosis activators, and this decrease was suppressed by the metformin and vacuolin-1, which suppressed lysosomal exocytosis. Thus, these findings suggest that ATP release via the lysosomal exocytosis may be one of the pathways for ATP release in response to stimulation.  相似文献   

19.
Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes   总被引:16,自引:0,他引:16  
Reddy A  Caler EV  Andrews NW 《Cell》2001,106(2):157-169
Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. Lysosomal exocytosis and membrane resealing are inhibited by the recombinant Syt VII C(2)A domain or anti-Syt VII C(2)A antibodies, or by antibodies against the cytosolic domain of Lamp-1, which specifically aggregate lysosomes. We further demonstrate that lysosomal exocytosis mediates the resealing of primary skin fibroblasts wounded during the contraction of collagen matrices. These findings reveal a fundamental, novel role for lysosomes: as Ca(2+)-regulated exocytic compartments responsible for plasma membrane repair.  相似文献   

20.
We have visualized the exocytosis of lysosomes into the peripheral circulation by the phagocytic endothelia of the venous sinuses of liver and bone marrow of rats. Perfusion fixation at normal body temperature produced images of the earliest stages of lysosomal exocytosis. After fixation at low body temperatures (7-12 degrees C), advanced stages of this process became evident, showing extrusion of lysosomes and their contents into the circulation. It is postulated that this form of exocytosis has escaped structural detection because of its rapidity and relative infrequency as compared to merocrine secretory exocytosis, and that fixation at low body temperatures arrests or slows down these exocytic events in sufficient measure for ultrastructural visualization. The possibility that this lysosomal exocytosis contributes to the presence of lysosomal enzymes detected in the peripheral blood should be considered. In addition, it is likely that lysosomal degradation products may be discharged by exocytosis into the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号