首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.  相似文献   

2.
The distributions of gamma-aminobutyric acid (GABA), glycine, glutamate and aspartate were measured in cochlear nuclei of two rats by quantitative histochemical mapping procedures. The levels and distributions in the two rats were comparable, and resembled those previously reported for cat cochlear nucleus. The results are consistent with a concept that these putative transmitter amino acids have similar levels and distributions in the cochlear nucleus among mammals.  相似文献   

3.
The activities of glutamine synthetase, glutaminase, glutamate decarboxylase, GABA aminotransferase, glutamate dehydrogenase, and aspartate aminotransferase were measured in four areas of the cat spinal cord and in dorsal and ventral roots. Five of the six enzymes showed identical distribution patterns; i.e. the activities in the dorsal and ventral gray matter were equal and those of dorsal and ventral white matter were equal. No statistical differences in the mean enzyme activities in the dorsal and ventral roots were found. Glutamate decarboxylase was the only enzyme which had a different pattern. The enzyme activity in dorsal gray was twice that of ventral gray; the same pattern as the GABA concentration in both these areas. The glutamine synthetase activities in the cord areas and roots correlated with the glutamine distribution reported earlier. Thus, the distribution of glutamine (not a transmitter) and GABA (questionable transmitter) in gray matter are dictated by their synthesizing enzymes, whereas the distribution of glutamate and aspartate (likely transmitter suspects) cannot be explained on the basis of enzyme activities. Therefore, the enzyme activities may be related to the amino acid levels primarily in metabolic compartments, whereas the excess of certain amino acids in specific areas of the cord and roots may be related to functional compartments accumulated for use in synaptic transmission.  相似文献   

4.
Changes in the amounts of proteins and amino acids in synaptosomes and whole tissue from the olfactory bulb and cerebral cortex of rats were measured during the period 5-25 days postnatal. The amount of neurotransmitter type amino acids (such as GABA, glutamate and aspartate) associated with synaptosomes obtained from 1g of brain tissue increased dramatically with the age of the animals, whereas non-transmitter type amino acids (such as serine and glutamine) showed relatively little change. The results were in harmony with an earlier cessation of synaptogenesis in the olfactory bulb than in the cerebral cortex.  相似文献   

5.
Abstract: The distributions of glycine, γ-aminobutyric acid (GABA), glutamate decarboxylase (EC 4.1.1.15), and GABA transaminase (EC 2.6.1.19) were determined in rabbit and mudpuppy retinas. In both species, peak levels of the amino acids and the enzymes occurred in the inner plexiform layer. Glutamate decarboxylase was almost entirely confined to the inner plexiform layer. Determinations were also made of the GABA content of 107 individual putative amacrine cell somas from mudpuppy retina. About 30% of those somas were found to have high endogenous GABA levels.  相似文献   

6.
Summary Superfusion of synaptosomes prepared from rat olfactory bulb revealed constant basal release of endogenous taurine (Tau), aspartate (Asp), glutamate (Glu) and-aminobutyrate (GABA): their release rates were 110.4 ± 13.0, 30.3 ± 6.7, 93.7 ± 13.1, and 53.3 ± 8.8 pmol/min/mg protein, respectively. The depolarizing-stimulation with 30mM KCl evoked 1.17-, 2.18-, 2.55- and 1.53-fold increases, respectively. Tau release was calcium-independent. However, the perfusion of synaptosomes with Tau (10µM) inhibited the evoked increase in GABA release by 63% without changing basal release, although it did not affect release of Asp and Glu. Phaclofen (10µM, a GABAB receptor antagonist), but not bicuculline (10µM, a GABAA receptor antagonist), counteracted the Tau-induced reduction in GABA release. These data suggest that Tau may be abundantly released from nerve endings of rat olfactory bulb and that it may regulate GABA release through the activation of presynaptic GABAB autoreceptors.  相似文献   

7.
The mechanism by which pentylenetetrazole provokes convulsions in animals has been investigated by measuring its influence in vitro on the activities of several enzymes of glutamate metabolism in rat brain homogenates. Pentylenetetrazole does not affect the specific activities of glutamine synthetase, glutaminase, or glutamate decarboxylase; it inhibits those of glutamate dehydrogenase and aspartate aminotransferase, and stimulates that of gamma-aminobutyric acid (GABA) aminotransferase. The overall consequence of the action of pentylenetetrazole on the activities of these enzymes should be an increase in the concentration of glutamate and a decrease in that of GABA. This modulation of glutamate and GABA metabolism by pentylenetetrazole could contribute to the triggering of convulsions.  相似文献   

8.
The developmental change of endogenous glutamate, as correlated to that of gamma-glutamyl transferase and other glutamate metabolizing enzymes such as phosphate activated glutaminase, glutamate dehydrogenase and aspartate, GABA and ornithine aminotransferases, has been investigated in cultured cerebral cortex interneurons and cerebellar granule cells. These cells are considered to be GABAergic and glutamatergic, respectively. Similar studies have also been performed in cerebral cortex and cerebellum in vivo. The developmental profiles of endogenous glutamate in cultured cerebral cortex interneurons and cerebellar granule cells corresponded rather closely with that of gamma-glutamyl transferase and not with other glutamate metabolizing enzymes. In cerebral cortex and cerebellum in vivo the developmental profiles of endogenous glutamate, gamma-glutamyl transferase and phosphate activated glutaminase corresponded with each other during the first 14 days in cerebellum, but this correspondence was less good in cerebral cortex. During the time period from 14 to 28 days post partum the endogenous glutamate concentration showed no close correspondence with any particular enzyme. It is suggested that gamma-glutamyltransferase regulates the endogenous glutamate concentration in culture neurons. The enzyme may also be important for regulation of endogenous glutamate in brain in vivo and particularly in cerebellum during the first 14 days post partum. Gamma-glutamyl transferase in cultured neurons and brain tissue in vivo appears to be devoid of maleate activated glutaminase.Abbreviations used Asp-T aspartate aminotransferase (EC 2.6.1.1) - GABA-T GABA aminotransferase (EC 2.6.1.19) - GAD glutamate decarboxylase (EC 4.1.1.15) - gamma-GT gamma-glutamyl transferase (gamma-glutamyl transpeptidase) (EC. 2.3.2.2) - Glu glutamate - GDH glutamate dehydrogenase (EC 1.4.1.3) - GS glutamine synthetase (EC 6.3.1.2) - MAG maleate activated glutaminase - Orn-T ornithine aminotransferase (EC 2.6.1.13) - PAG phosphate activated glutaminase (EC 3.5.1.1)  相似文献   

9.
Discrete layers from frozen dried sections of Rhesus monkey retina were analyzed for each of four amino acids. Peak levels of glycine were found near the border of the inner nuclear and inner reticular layers, and were high throughout these two layers. The levels were less than 50% of the peak in the adjacent ganglion cells and outer reticular layers and fell to very low levels elsewhere. GABA was much more sharply restricted to the inner reticular layer and fell off on both sides to levels of 10% or less of the peak in the fiber and photoreceptor cell layers. Glutamate and aspartate were highest in the ganglion cell layer. On a lipid-free dry weight basis the peak aspartate level was about twice that of brain. Moderately high levels of both aspartate and glutamate were found in the inner reticular and fiber layers. Elsewhere the levels ranged from 20 to 50% of the peak, and both amino acids were relatively low in optic nerve. The amino acid distributions are compatible with a transmitter function for GABA in amacrine cells and for glycine in horizontal and amacrine cells. Glutamate and aspartate may be especially high in Müller fibers, ganglion cells or both.  相似文献   

10.
From rat hippocampal homogenate, we recently isolated a novel subcellular fraction richly containing glial plasmalemmal vesicles (GPV), which takes up glutamate remarkably as a synaptosomal fraction [Y. Nakamura et al. (1993) Glia, 9, 48–56]. In the present study, we prepared GPV from different regions of rat CNS, namely olfactory bulb (Ob), cerebral cortex (Cx), caudatoputamen (Cp), hippocampus (Hp), cerebellum (Ce) and spinal cord (Sc), and analyzed their activities of Na+-dependent uptake of following neurotransmitters and a related compound; glutamate, -aminobutyrate (GABA), glycine, dopamine and choline. The uptake activities of these amino acids were not significantly different between GPV and synaptosomes in each region. Regionally, however, the activities were varied considerably. The activities of glutamate uptake revealed in the following rank order: Cx, Hp, Cp>Ce, Ob>Sc. GABA uptake activities were: Ce>Ob, Cx, Hp>Cp, while glycine uptake activities were: Sc, Ce>Ob, Cp, Cx, Hp. On the other hand, the uptake activities of dopamine and choline were quite different between GPV and synaptosomes. Synaptosomal fraction from Cp took up dopamine in a high activity; however, GPV from the same tissue hardly showed the uptake activity. Choline was taken up by synaptosomes prepared from Hp but not by GPV.  相似文献   

11.
Summary The activities of the glutamate metabolizing enzymes phosphate-activated glutaminase (PAG) and glutamate dehydrogenase (Gldh) are demonstrated in semithin sections of the rat retina. Highest activities of both enzymes are found in the photoreceptor inner segments, PAG additionally in the outer plexiform layer and Gldh in the inner plexiform layer and in mueller glial cells. Although their non randomly distribution makes a role in neurotransmitter metabolism possible, their high activities in inner segments point towards the general problem of the functional interpretation of both molecules.  相似文献   

12.
R Gebhard 《Histochemistry》1992,97(1):101-103
The activities of the glutamate metabolizing enzymes phosphate-activated glutaminase (PAG) and glutamate dehydrogenase (Gldh) are demonstrated in semithin sections of the rat retina. Highest activities of both enzymes are found in the photoreceptor inner segments, PAG additionally in the outer plexiform layer and Gldh in the inner plexiform layer and in mueller glial cells. Although their non randomly distribution makes a role in neurotransmitter metabolism possible, their high activities in inner segments point towards the general problem of the functional interpretation of both molecules.  相似文献   

13.
Evoked release of glutamate and aspartate from cultured cerebellar granule cells was studied after preincubation of the cells in tissue culture medium with glucose (6.5 mM), glutamine (1.0 mM),d[3H] aspartate and in some cases aminooxyacetate (5.0 mM) or phenylsuccinate (5.0 mM). The release of endogenous amino acids and ofd-[3H] aspartate was measured under physiological and depolarizing (56 mM KCl) conditions both in the presence and absence of calcium (1.0 mM), glutamine (1.0 mM), aminooxyacetate (5.0 mM) and phenylsuccinate (5.0 mM). The cellular content of glutamate and aspartate was also determined. Of the endogenous amino acids only glutamate was released in a transmitter fashion and newly synthesized glutamate was released preferentially to exogenously suppliedd-[3H] aspartate, a marker for exogenous glutamate. Evoked release of endogenous glutamate was reduced or completely abolished by respectively, aminooxyacetate and phenylsuccinate. In contrast, the release ofd-[3H] aspartate was increased reflecting an unaffected release of exogenous glutamate and an increased psuedospecific radioactivity of the glutamate transmitter pool. Since aminooxyacetate and phenylsuccinate inhibit respectively aspartate aminotransferase and mitochondrial keto-dicarboxylic acid transport it is concluded that replenishment of the glutamate transmitter pool from glutamine, formed in the mitochondrial compartment by the action of glutaminase requires the simultaneous operation of mitochondrial keto-dicarboxylic acid transport and aspartate aminotransferase which is localized both intra- and extra-mitochondrially. The purpose of the latter enzyme apparently is to catalyze both intra- and extra-mitochondrial transamination of -ketoglutarate which is formed intramitochondrially from the glutamate carbon skeleton and transferred across the mitochondrial membrane to the cytosol where transmitter glutamate is formed. This cytoplasmic origin of transmitter glutamate is in aggreement with the finding thatd-[3H] aspartate readily labels the transmitter pool even when synthesis of endogenous transmitter is impaired in the presence of AOAA or phenylsuccinate.Special issue dedicated to Dr Elling Kvamme  相似文献   

14.
PUTATIVE TRANSMITTERS IN DENERVATED OLFACTORY CORTEX   总被引:6,自引:6,他引:0  
Olfactory bulb removal and the consequent degeneration of the lateral olfactory tract led to a selective change in putative synaptic transmitters of the denervated olfactory cortex of guinea-pigs. Nine days after bulbectomy there was a significant decrease in content of aspartate (31%) and glutamate (20%) in olfactory cortex but no change in neocortex. The content of GABA, alanine and ACh in olfactory cortex was unchanged (± 3 per cent of control). The content of 5-HT, dopamine, NE and glycine was increased by 10-18 per cent. The decrease in aspartate and glutamate content of the olfactory cortex after bulbectomy suggests that these two amino acids have a high concentration in fibres of the lateral olfactory tract. This tissue may prove to be useful in determining the possible role of these acidic amino acids in neuronal function.  相似文献   

15.
The morphology of the retina of the Australian lungfish Neoceratodus forsteri was investigated by means of light- and electron microscopy, whilst immunocytochemical studies were performed to determine the cellular distributions of the major amino acid neurotransmitters and other amino acids. The distributions of glycine and GABA were similar to those previously described for teleost, amphibian and mammalian retinae. Labelling was abundant in amacrine cells, whilst GABA was also present in one layer of horizontal cells and some bipolar cells. Taurine was present in both rods and cones, but, unlike the mammalian or avian retina, was absent from other cellular structures, including glial elements. Unexpectedly, the photoreceptor terminals lacked an apparent content of the excitatory amino acid transmitter glutamate. The glutamate that was present in the rods and cones occupied a crescentic arc corresponding to the location of glycogen-rich paraboloids. Asparagine was also present in rods, albeit in the modified mitochondria that formed the elipsoids of the rod inner segments. Arginine, the precursor for formation of nitric oxide, was present in glial cells, and in the paraboloids of both rods and cones.  相似文献   

16.
Phosphate-activated glutaminase is present at high levels in the cerebellar mossy fiber terminals. The role of this enzyme for the production of glutamate from glutamine in the parallel-fiber terminals is unclear. In order to address this, we used light miroscopic immunoperoxidase and electron microscopic immunogold methods to study the localization of glutamate in rat cerbellar slices incubated with physiological K+ (3 mmol/L) and depolarizing K+ (40 mmol/L) concentrations, and during depolarizing conditions with the addition of glutamine and the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine. During K+-induced depolarization glutamate labeling was redistributed from parallel-fiber terminals to glial cells. The nerve terminal content of glutamate was sustained when the slices were supplied with glutamine, which also reduced the accumulation of glutamate in glia. In spite of glutamine supplementation, the depolarized slices treated with 6-diazo-5-oxo-l-norleucine showed depletion of glutamate from parallel-fiber terminals and accumulation in glial cells. We conclude that cerebellar parallel-fiber terminals contain a glutaminase activity enabling them to synthesize glutamate from glutamine. Our results confirm that this is also true for the mossy fiber terminals. In addition, we show that, like for glutamate, the levels of aspartate in parallel-fiber terminals and GABA in Golgi fiber terminals can be maintained during depolarization if glutamine is present. This process is dependent on the activity of a glutaminase, as it can be inhibited by 6-diazo-5-oxo-l-norleucine, suggesting that the glutaminase reaction is important for glutamine to act as a precursor also for aspartate and GABA. The low levels of the kidney type of glutaminase that previously has been shown to be present in the parallel and Golgi fiber terminals could be sufficient to produce the transmitter amino acids. Alternatively, the amino acids could be produced from the liver type of glutaminase, which is not yet localized on the cellular level, or from an unknown glutminase.  相似文献   

17.
Excitatory (glutamate, aspartate) or inhibitory amino acids (-aminobutyric acid: GABA, taurine) and glutamine contents were examined in acutely induced cerebral ischemia in spontaneously hypertensive rats. At 20 min ischemia most of these amino acids remained unchanged, but glutamine significantly decreased by 14% in the CA3 hippocampal subfield. At 60 min ischemia glutamate significantly decreased by 14% in the CA3, aspartate by 17–26% in the CA3, cingulate cortex, septum and striatum. In contrast, GABA significantly increased by 48–106% in the cortices (frontal, parietal and cingulate), striatum and nucleus accumbens, but insignificantly in hippocampal subrïelds. Likewise, taurine increased in the parietal cortex and nucleus accumbens. Glutamine showed heterogeneous changes (increase in the nucleus accumbens and decrease in the CA3). Amino acid levels change during ischemia, but their changes are varied in each area, implying that different reaction of amino acids may explain the selective vulnerability to cerebral ischemia.  相似文献   

18.
The effects of ammonium chloride (3 mM) and -methylene-dl-aspartate (BMA; 5 mM) (an inhibitor of aspartate aminotransferase, a key enzyme of the malate-aspartate shuttle (MAS)) on the metabolism of glutamate and related amino acids were studied in primary cultures of astrocytes and neurons. Both ammonia and BMA inhibited14CO2 production from [U-14C]-and [1-14C]glutamate by astrocytes and neurons and their effects were partially additive. Acute treatment of astrocytes with ammonia (but not BMA) increased astrocytic glutamine. Acute treatment of astrocytes with ammonia or BMA decreased astrocytic glutamate and aspartate (both are key components of the MAS). Acute treatment of neurons with ammonia decreased neuronal aspartate and glutamine and did not apparently affect the efflux of aspartate from neurons. However, acute BMA treatment of neurons led to decreased neuronal glutamate and glutamine and apparently reduced the efflux of aspartate and glutamine from neurons. The data are consistent with the notion that both ammonia and BMA may inhibit the MAS although BMA may also directly inhibit cellular glutamate uptake. Additionally, these results also suggest that ammonia and BMA exert differential effects on astroglial and neuronal glutamate metabolism.This paper is dedicated to Professor E. Kvamme. Dr. Kvamme has conducted numerous pioneering studies on the regulation of the metabolism of glutamine, glutamate and ammonia in nervous and other tissues (see Refs. 1 and 3 for a complete discussion and citation of his many papers). Many important ideas in this exciting field of research have emerged from the work carried out in his laboratory.  相似文献   

19.
Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.  相似文献   

20.
Gas chromatography-mass spectrometry was used to evaluate the metabolism of [15N]glutamine in isolated rat brain synaptosomes. In the presence of 0.5 mM glutamine, synaptosomes accumulated this amino acid to a level of 25-35 nmol/mg protein at an initial rate greater than 9 nmol/min/mg of protein. The metabolism of [15N]glutamine generated 15N-labelled glutamate, aspartate, and gamma-aminobutyric acid (GABA). An efflux of both [15N]glutamate and [15N]aspartate from synaptosomes to the medium was observed. Enrichment of 15N in alanine could not be detected because of a limited pool size. Elimination of glucose from the incubation medium substantially increased the rate and amount of [15N]aspartate formed. It is concluded that: (1) With 0.5 mM external glutamine, the glutaminase reaction, and not glutamine transport, determines the rate of metabolism of this amino acid. (2) The primary route of glutamine catabolism involves aspartate aminotransferase which generates 2-oxoglutarate, a substrate for the tricarboxylic acid cycle. This reaction is greatly accelerated by the omission of glucose. (3) Glutamine has preferred access to a population of synaptosomes or to a synaptosomal compartment that generates GABA. (4) Synaptosomes maintain a constant internal level of glutamate plus aspartate of about 70-80 nmol/mg protein. As these amino acids are produced from glutamine in excess of this value, they are released into the medium. Hence synaptosomal glutamine and glutamate metabolism are tightly regulated in an interrelated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号