首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genes SNO1 and SNZ1 are Saccharomyces cerevisiae homologues of PDX2 and PDX1 which participate in pyridoxine synthesis in the fungus Cercospora nicotianae. In order to clarify their function, the two genes SNO1 and SNZ1 were expressed in Escherichia coli either individually or simultaneously and with or without a His-tag. When expressed simultaneously, the two protein products formed a complex and showed glutaminase activity. When purified to homogeneity, the complex exhibited a specific activity of 480 nmol.mg(-1).min(-1) as glutaminase, with a Km of 3.4 mm for glutamine. These values are comparable to those for other glutamine amidotransferases. In addition, the glutaminase activity was impaired by 6-diazo-5-oxo-L-norleucine in a time- and dose-dependent manner and the enzyme was protected from deactivation by glutamine. These data suggest strongly that the complex of Sno1p and Snz1p is a glutamine amidotransferase with the former serving as the glutaminase, although the activity was barely detectable with Sno1p alone. The function of Snz1p and the amido acceptor for ammonia remain to be identified.  相似文献   

2.
3.
We report the analysis of a 36-kbp region of the Neurospora crassa genome, which contains homologs of two closely linked stationary phase genes, SNZ1 and SNO1, from Saccharomyces cerevisiae. Homologs of SNZ1 encode extremely highly conserved proteins that have been implicated in pyridoxine (vitamin B6) metabolism in the filamentous fungi Cercospora nicotianae and in Aspergillus nidulans. In N. crassa, SNZ and SNO homologs map to the region occupied by pdx-1 (pyridoxine requiring), a gene that has been known for several decades, but which was not sequenced previously. In this study, pyridoxine-requiring mutants of N. crassa were found to possess mutations that disrupt conserved regions in either the SNZ or SNO homolog. Previously, nearly all of these mutants were classified as pdx-1. However, one mutant with a disrupted SNO homolog was at one time designated pdx-2. It now appears appropriate to reserve the pdx-1 designation for the N. crassa SNZ homolog and pdx-2 for the SNO homolog. We further report annotation of the entire 36,030-bp region, which contains at least 12 protein coding genes, supporting a previous conclusion of high gene densities (12,000-13,000 total genes) for N. crassa. Among genes in this region other than SNZ and SNO homologs, there was no evidence of shared function. Four of the genes in this region appear to have been lost from the S. cerevisiae lineage.  相似文献   

4.
Pyridoxine (PN) is a metabolic precursor of pyridoxal phosphate that functions as a cofactor of many enzymes in amino acid metabolism. PN, pyridoxal, and pyridoxamine are collectively referred to as vitamin B6, and mammalian organisms depend on its uptake from the diet. In addition to the ability to use extracellular vitamin B6, most unicellular organisms are also capable of synthesizing PN to generate pyridoxal phosphate. Here, we report the isolation of Saccharomyces cerevisiae mutants that have lost the ability to transport PN across the plasma membrane. We used these mutants to isolate TPN1, the first known gene encoding a transport protein for vitamin B6. Tpn1p is a member of the purine-cytosine permease family within the major facilitator superfamily. The protein functions as a proton symporter, localizes to the plasma membrane, and has high affinity for PN. TPN1 mutants lost the ability to utilize extracellular PN, pyridoxal, and pyridoxamine, showing that there is no other transporter for vitamin B6 encoded in the genome. Amino acid substitutions that led to a loss of Tpn1p function localized to transmembrane domain 4 within the 12-transmembrane domain protein. Moreover, expression of TPN1 was regulated and increased with decreasing concentrations of vitamin B6 in the medium. We also provide evidence that of the highly conserved SNZ and SNO genes in S. cerevisiae, only the protein encoded by SNZ1 is required for vitamin B6 biosynthesis.  相似文献   

5.
The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted cells establish or maintain a cell cycle arrest in G1. Proteins required for efficient G1 arrest and longevity when nutrients are limiting include the DNA replication stress response proteins Mec1 and Rad53. Ectopic expression of CLN3 encoding a G1 cyclin downregulated during nutrient depletion increases the frequency with which nutrient depleted cells arrest growth in S phase instead of G1. Ectopic expression of CLN3 also shortens chronological lifespan in concert with age-dependent increases in genome instability and apoptosis. These findings indicate that replication stress is an important determinant of chronological lifespan in budding yeast. Protection from replication stress by growth-inhibitory effects of caloric restriction, osmotic and other stresses may contribute to hormesis effects on lifespan. Replication stress also likely impacts the longevity of higher eukaryotes, including humans.  相似文献   

6.
Caspase proteases are a conserved protein family predominantly known for engaging and executing apoptotic cell death. Nevertheless, in higher eukaryotes, caspases also influence a variety of cell behaviors including differentiation, proliferation and growth control. S. cerevisiae expresses a primordial caspase, yca1, and exhibits apoptosis-like death under certain stresses; however, the benefit of a dedicated death program to single cell organisms is controversial. In the absence of a clear rationale to justify the evolutionary retention of a death only pathway, we hypothesize that yca1 also influences non-apoptotic events. We report that genetic ablation and/or catalytic inactivation of Yca1p leads to a longer G1/S transition accompanied by slower growth in fermentation conditions. Downregulation of Yca1p proteolytic activity also results in failure to arrest during nocodazole treatment, indicating that Yca1p participates in the G2/M mitotic checkpoint. 20s proteasome activity and ROS staining of the Delta yca1 strain is indistinguishable from its isogenic control suggesting that putative regulation of the oxidative stress response by Yca1p does not instigate the cell cycle phenotype. Our results demonstrate multiple non-death roles for yca1 in the cell cycle.  相似文献   

7.
8.
9.
10.
D Ursic  B Ganetzky 《Gene》1988,68(2):267-274
We have isolated and sequenced a cDNA from Drosophila melanogaster that is homologous to the mouse Tcp-1 gene encoding the t complex polypeptide 1, TCP-1. The Drosophila gene maps by in situ hybridization to bands 94B1-2 of the polytene chromosomes. It shares 66% nucleotide sequence identity with the mouse gene. The predicted Drosophila protein consists of 557 amino acids and shares 72% identity with the mouse polypeptide. The TCP-1 polypeptide appears to be highly conserved in evolution from mammals to simple eukaryotes because the Drosophila gene probe also detects related sequences in DNA from the yeast, Saccharomyces cerevisiae. The presence of TCP-1-related polypeptides in organisms such as Drosophila and yeast should facilitate biochemical and genetic analysis of its function.  相似文献   

11.
The newly discovered Saccharomyces cerevisiae gene KRR1 (YCL059c) encodes a protein essential for cell viability. Krr1p contains a motif of clustered basic amino acids highly conserved in the evolutionarly distant species from yeast to human. We demonstrate that Krr1p is localized in the nucleolus. The KRR1 gene is highly expressed in dividing cells and its expression ceases almost completely when cells enter the stationary phase. In vivo depletion of Krr1p leads to drastic reduction of 40S ribosomal subunits due to defective 18S rRNA synthesis. We propose that Krr1p is required for proper processing of pre-rRNA and the assembly of preribosomal 40S subunits.  相似文献   

12.
Assembly of mitochondrial F1-ATPase in Saccharomyces cerevisiae requires the molecular chaperone, Atp11p. Database searches have identified protein sequences from Schizosaccharomyces pombe and two species of Drosophila that are homologous to S. cerevisiae Atp11p. A cDNA encoding the putative Atp11p from Drosophila yakuba was shown to complement the respiratory deficient phenotype of yeast harboring an atp11::HIS3 disruption allele. Furthermore, the product of this Drosophila gene was shown to interact with the S. cerevisiae F1 beta subunit in the yeast two-hybrid assay. These results indicate that Atp11p function is conserved in higher eukaryotes.  相似文献   

13.
The heterotrimeric CCAAT-binding complex is evolutionarily conserved in eukaryotic organisms, including fungi, plants and mammals. In the filamentous fungus Aspergillus nidulans, the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the subunits HapB, HapC and HapE. All three subunits are necessary for DNA binding. HapB contains two putative nuclear localisation signal sequences (NLSs) designated NLS1 and NLS2. Previously, it was shown that only NLS2 was required for nuclear localisation of HapB. Furthermore, HapC and HapE are transported to the nucleus only in complex with HapB via a piggy back mechanism. Here, by using various GFP constructs and by establishing a novel marker gene for transformation of A.nidulans, i.e. the pabaA gene encoding p-aminobenzoic acid synthase, it was shown that the HapB homologous proteins of both Saccharomyces cerevisiae (Hap2p) and human (NF-YA) use an NLS homologous to HapB NLS1 for nuclear localisation in S.cerevisiae. Interestingly, for A.nidulans HapB, NLS1 was sufficient for nuclear localisation in S.cerevisiae. In A.nidulans, HapB NLS1 was also functional when present in a different protein context. However, in A.nidulans, both S.cerevisiae Hap2p and human NF-YA entered the nucleus only when HapB NLS2 was present in the respective proteins. In that case, both proteins Hap2p and NF-YA complemented, at least in part, the hap phenotype of A.nidulans with respect to lack of growth on acetamide. Similarly, A.nidulans HapB and human NF-YA complemented a hap2 mutant of S.cerevisiae. In summary, HapB, Hap2p and NF-YA are interchangeable. Because the A.nidulans hapB mutant was complemented, at least in part, by both the human NF-YA and S.cerevisiae Hap2p this finding suggests that the piggy-back mechanism of nuclear transport found for A.nidulans is conserved in yeast and human.  相似文献   

14.
15.
16.
The rapamycin-sensitive (TOR) signalling pathway in Saccharomyces cerevisiae controls growth and cell proliferation in response to nutrient availability. Rapamycin treatment causes cells to arrest growth in G1 phase. The mechanism by which the inhibition of the TOR pathway regulates cell cycle progression is not completely understood. Here we show that rapamycin causes G1 arrest by a dual mechanism that comprises downregulation of the G1-cyclins Cln1-3 and upregulation of the Cdk inhibitor protein Sic1. The increase of Sic1 level is mostly independent of the downregulation of the G1 cyclins, being unaffected by ectopic CLN2 expression, but requires Sic1 phosphorylation of Thr173, because it is lost in cells expressing Sic1(T173A). Rapamycin-mediated Sic1 upregulation involves nuclear accumulation of a more stable, non-ubiquitinated protein. Either SIC1 deletion or CLN3 overexpression results in non-cell-cycle-specific arrest upon rapamycin treatment and makes cells sensitive to a sublethal dose of rapamycin and to nutrient starvation. In conclusion, our data indicate that Sic1 is involved in rapamycin-induced G1 arrest and that deregulated entrance into S phase severely decreases the ability of a cell to cope with starvation conditions induced by nutrient depletion or which are mimicked by rapamycin treatment.  相似文献   

17.
We have isolated a gene from the yeast Saccharomyces cerevisiae that encodes a 2.0-kilobase heat-inducible mRNA. This gene, which we have designated STI1, for stress inducible, was also induced by the amino acid analog canavanine and showed a slight increase in expression as cells moved into stationary phase. The STI1 gene encodes a 66-kilodalton protein, as determined from the sequence of the longest open reading frame. The putative STI1 protein, as identified by two-dimensional gel electrophoresis, migrated in the region of 73 to 75 kilodaltons as a series of four isoforms with different isoelectric points. STI1 is not homologous to the other conserved HSP70 family members in yeasts, despite similarities in size and regulation. Cells carrying a disruption mutation of the STI1 gene grew normally at 30 degrees C but showed impaired growth at higher and lower temperatures. Overexpression of the STI1 gene resulted in substantial trans-activation of SSA4 promoter-reporter gene fusions, indicating that STI1 may play a role in mediating the heat shock response of some HSP70 genes.  相似文献   

18.
19.
TOR controls translation initiation and early G1 progression in yeast.   总被引:24,自引:7,他引:17       下载免费PDF全文
Saccharomyces cerevisiae cells treated with the immunosuppressant rapamycin or depleted for the targets of rapamycin TOR1 and TOR2 arrest growth in the early G1 phase of the cell cycle. Loss of TOR function also causes an early inhibition of translation initiation and induces several other physiological changes characteristic of starved cells entering stationary phase (G0). A G1 cyclin mRNA whose translational control is altered by substitution of the UBI4 5' leader region (UBI4 is normally translated under starvation conditions) suppresses the rapamycin-induced G1 arrest and confers starvation sensitivity. These results suggest that the block in translation initiation is a direct consequence of loss of TOR function and the cause of the G1 arrest. We propose that the TORs, two related phosphatidylinositol kinase homologues, are part of a novel signaling pathway that activates eIF-4E-dependent protein synthesis and, thereby, G1 progression in response to nutrient availability. Such a pathway may constitute a checkpoint that prevents early G1 progression and growth in the absence of nutrients.  相似文献   

20.
Ste20/PAK serine/threonine protein kinases have been suggested as playing essential roles in cell signalling and morphogenesis as potential targets of Cdc42 and Rac GTPases. We have isolated and characterized the Saccharomyces cerevisiae SKM1 gene, which codes for a novel member of this family of protein kinases. The amino acid sequence analysis of Skm1p revealed the presence of a PH domain and a putative p21-binding domain near its amino terminus, suggesting its involvement in cellular signalling or cytoskeletal functions. However, deletion of SKM1 produced no detectable phenotype under standard laboratory conditions. Moreover, disruption of each of the two other S. cerevisiae Ste20/PAK-like kinase-encoding genes, STE20 and CLA4 , in skm1 backgrounds, showed that Skm1p is not redundant with Ste20p or Cla4p. Interestingly, overexpression of SKM1 led to morphological alterations, indicating a possible role for this protein in morphogenetic control. Furthermore, overproduction of Skm1p lacking its N-terminus caused growth arrest. This effect was also seen when similarly truncated versions of Ste20p or Cla4p were overexpressed. We further observed that overproduction of this C-terminal fragment of Skm1p complements the mating defect of a ste20 mutant strain. These results suggest that the N-terminal domains of S. cerevisiae Ste20/PAK-like protein kinases share a negative regulatory function and play a role in substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号