共查询到20条相似文献,搜索用时 0 毫秒
1.
Wu JD Haugk K Woodke L Nelson P Coleman I Plymate SR 《Journal of cellular biochemistry》2006,99(2):392-401
The insulin-like growth factor type I receptor (IGF-IR) has been suggested to play an important role in prostate cancer progression and possibly in the progression to androgen-independent (AI) disease. The term AI may not be entirely correct, in that recent data suggest that expression of androgen receptor (AR) and androgen-regulated genes is the primary association with prostate cancer progression after hormone ablation. Therefore, signaling through other growth factors has been thought to play a role in AR-mediated prostate cancer progression to AI disease in the absence of androgen ligand. However, existing data on how IGF-IR signaling interacts with AR activation in prostate cancer are conflicting. In this Prospect article, we review some of the published data on the mechanisms of IGF-IR/AR interaction and present new evidence that IGF-IR signaling may modulate AR compartmentation and thus alter AR activity in prostate cancer cells. Inhibition of IGF-IR signaling can result in cytoplasmic AR retention and a significant change in androgen-regulated gene expression. Translocation of AR from the cytoplasm to the nucleus may be associated with IGF-induced dephosphorylation. Since fully humanized antibodies targeting the IGF-IR are now in clinical trials, the current review is intended to reveal the mechanisms of potential therapeutic effects of these antibodies on AI prostate cancers. 相似文献
2.
Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence 总被引:15,自引:0,他引:15
Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen‐independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen‐independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen‐independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naïve tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co‐regulatory proteins. These AR changes result in a “super AR” that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen‐independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy. © 2003 Wiley‐Liss, Inc. 相似文献
3.
4.
Sivanandam A Murthy S Chinnakannu K Bai VU Kim SH Barrack ER Menon M Reddy GP 《Journal of cellular physiology》2011,226(7):1889-1896
Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival. 相似文献
5.
Wei Liu Chunyu Wang Shengli Wang Kai Zeng Shan Wei Ning Sun Ge Sun Manlin Wang Renlong Zou Wensu Liu Lin Lin Huijuan Song Zining Jin Yue Zhao 《International journal of biological sciences》2021,17(1):188
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers. 相似文献
6.
7.
Androgen and androgen receptor (AR) are involved in growth of normal prostate and development of prostatic diseases including prostate cancer. Androgen deprivation therapy is used for treating advanced prostate cancer. This therapeutic approach focuses on suppressing the accumulation of potent androgens, testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), or inactivating the AR. Unfortunately, the majority of patients with prostate cancer eventually advance to androgen-independent states and no longer respond to the therapy. In addition to the potent androgens, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), reduced from 5alpha-DHT through 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), activated signaling may represent a novel pathway responsible for the progression to androgen-independent prostate cancer. Androgen sensitive human prostate cancer LNCaP cells were used to compare 5alpha-DHT and 3alpha-diol activated androgenic effects. In contrast to 5alpha-DHT, 3alpha-diol regulated unique patterns of beta-catenin and Akt expression as well as Akt phosphorylation in parental and in AR-silenced LNCaP cells. More significantly, 3alpha-diol, but not 5alpha-DHT, supported AR-silenced LNCaP cells and AR negative prostate cancer PC-3 cell proliferation. 3alpha-diol-activated androgenic effects in prostate cells cannot be attributed to the accumulation of 5alpha-DHT, since 5alpha-DHT formation was not detected following 3alpha-diol administration. Potential accumulation of 3alpha-diol, as a result of elevated 3alpha-HSD expression in cancerous prostate, may continue to support prostate cancer growth in the presence of androgen deprivation. Future therapeutic strategies for treating advanced prostate cancer might need to target reductive 3alpha-HSD to block intraprostatic 3alpha-diol accumulation. 相似文献
8.
The androgen receptor plays a pivotal role in the prostate. Its primary function is to provide responsive gene products for differentiation and growth, but under abnormal conditions it contributes to the development of prostate cancer. The goal of this review is to elucidate the molecular functions of the androgen receptor and its role in prostate cancer. Initially the function of the androgen receptor will be described. Next, the clinical diagnosis, epidemiological impact, and treatments of androgen-dependent and -independent prostate cancer will be discussed. Finally we will examine how the mechanism of androgen action has played a role in the translation of new therapies and how this may influence future treatment modalities of prostate cancer. 相似文献
9.
10.
11.
The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer 总被引:5,自引:0,他引:5
Chatterjee B 《Molecular and cellular biochemistry》2003,253(1-2):89-101
12.
Runyi Cao Min Ke Qingxin Wu Qian Tian Li Liu Zao Dai Shan Lu Ping Liu 《Journal of cellular physiology》2019,234(10):17444-17458
Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa. 相似文献
13.
14.
Molecular regulation of androgen action in prostate cancer 总被引:1,自引:0,他引:1
15.
Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer 下载免费PDF全文
Jennifer M Thomas‐Ahner Dayong Wu Xiangtao Liu Zhenqing Ye Liguo Wang Benjamin Sunkel Cassandra Grenade Junsheng Chen Debra L Zynger Pearlly S Yan Jiaoti Huang Kenneth P Nephew Tim H‐M Huang Shili Lin Steven K Clinton Wei Li Victor X Jin Qianben Wang 《The EMBO journal》2015,34(4):502-516
16.
Cyclin E as a coactivator of the androgen receptor 总被引:7,自引:0,他引:7
Yamamoto A Hashimoto Y Kohri K Ogata E Kato S Ikeda K Nakanishi M 《The Journal of cell biology》2000,150(4):873-880
Androgens play an important role in the growth of prostate cancer, but the molecular mechanism that underlies development of resistance to antiandrogen therapy remains unknown. Cyclin E has now been shown to increase the transactivation activity of the human androgen receptor (AR) in the presence of its ligand dihydrotestosterone. The enhancement of AR activity by cyclin E was resistant to inhibition by the antiandrogen 5-hydroxyflutamide. Cyclin E was shown to bind directly to the COOH terminus portion of the AB domain of the AR, and to enhance its AF-1 transactivation function. These results suggest that cyclin E functions as a coactivator of the AR, and that aberrant expression of cyclin E in tumors may contribute to persistent activation of AR function, even during androgen ablation therapy. 相似文献
17.
The importance of androgens and androgen receptors (AR) in primary prostate cancer is well established. Metastatic disease is usually treated with some form of androgen ablation, which is effective for a limited amount of time. The role of AR in prostate cancers that recur despite androgen ablation therapy is less certain. Most of these tumors express prostate specific antigen (PSA), an androgen-regulated gene; moreover, AR is generally highly expressed in recurrent prostate cancer. We propose that AR continues to play a role in many of these tumors and that it is not only the levels of AR, ligands, and co-regulators, but also the changes in cell signaling that induce AR action in recurrent prostate cancer. These pathways are, therefore, potential therapeutic targets. 相似文献
18.
19.
20.
Lu Y Cai Z Xiao G Liu Y Keller ET Yao Z Zhang J 《Journal of cellular biochemistry》2007,101(3):676-685
Although the primary role of chemokines and their receptors is controlling the trafficking of leukocytes during inflammatory responses, they also play pleoitropic roles in cancer development. There is emerging evidence that cancer cells produce chemokines that induce tumor cell proliferation or chemotaxis in various cancer types. We have previously reported that MCP-1 acts as a paracrine and autocrine factor for prostate cancer (PCa) growth and invasion. As the cellular effects of MCP-1 are mediated by CC chemokine receptor 2 (CCR2), we hypothesized that CCR2 may contribute PCa progression. Accordingly, we first determined CCR2 mRNA and protein expression in various cancer cell lines, including PCa and other cancer types. All cells expressed CCR2 mRNA and protein, but in PCa, more aggressive cancer cells such as C4-2B, DU145, and PC3 expressed a higher amount of CCR2 compared with the less aggressive cancer cells such as LNCaP or non-neoplastic PrEC and RWPE-1 cells. Further, we found a positive correlation between CCR2 expression and PCa progression by analyzing an ONCOMINE gene array database. We confirmed that CCR2 mRNA was highly expressed in PCa metastatic tissues compared with the localized PCa or benign prostate tissues by real-time RT-PCR. Finally, CCR2 protein expression was examined by immunohistochemical staining on tissue microarray specimens from 96 PCa patients and 31 benign tissue controls. We found that CCR2 expression correlated with Gleason score and clinical pathologic stages, whereas lower levels of CCR2 were expressed in normal prostate tissues. These results suggest that CCR2 may contribute to PCa development. 相似文献