共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Dennis Thomas 《In vitro cellular & developmental biology. Plant》2007,43(5):442-448
An efficient and reproducible method for inducing a large number of bulblets from rhizome explants of Curculigo orchioides Gaertn., an endangered medicinal herb, has been developed. The rhizome pieces, measuring about 1 × 1 cm (length × width),
were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of the cytokinins 6-benzylaminopurine,
kinetin, and thidiazuron (TDZ) alone or in combination with 1-naphthalene acetic acid or indole-3-butyric acid (IBA). Of the
three cytokinins used, TDZ at 7 μM gave the maximum response, with 82% of the cultures responding with an average number of
15.4 bulblets per explant. The addition of auxins with cytokinin considerably increased the response. The optimum induction
occurred on MS medium supplemented with 7 μM TDZ and 0.5 μM IBA. On this medium, 88% of the cultures responded with an average
number of 21.4 bulblets per explant. Experiments were also carried out to investigate the role of the sugars sucrose, mannose,
and glucose along with 7 μM TDZ and 0.5 μM IBA. The results indicate that sucrose and mannose at particular concentrations
have critical roles in promoting in vitro bulblet induction. The maximum result was observed on MS medium supplemented with 7 μM TDZ, 0.5 μM IBA, and 200 mM mannose.
On this medium, 97% of the cultures responded with an average number of 26.8 bulblets per culture. Several secondary bulblets
developing from the leaf blades of primary bulblets were produced when the latter were transferred to MS basal medium for
further development. Out of the 45 bulblets transferred to soil, 40 survived. This protocol can be used for the rapid micropropagation
of this endangered medicinal herb. 相似文献
2.
Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 M BA. Following elongation on MS medium supplemented with 1 M BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.Communicated by E.D. Earle 相似文献
3.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in
thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l
α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis
of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l
zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS)
medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid.
Regenerated plants have normal morphology. 相似文献
4.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture. 相似文献
5.
In vitro propagation of Rhododendron ponticum L. subsp. baeticum, an endangered species present in limited and vulnerable populations as a Tertiary relict in the southern Iberian Peninsula, was attained. Several cytokinin:IAA ratios and a range of zeatin concentrations were evaluated for their effect on shoot multiplication from apical shoots and nodal segments. The type of cytokinin and the origin of the explant were the most important factors affecting shoot multiplication. The highest shoot multiplication rate was obtained from single-nodal explants on medium supplemented with zeatin. Increasing zeatin concentration promotes shoot multiplication independently of explant type, although this effect tends to decrease with higher zeatin concentration. Shoot growth was higher in apical shoots and it was not stimulated by the presence of auxin. A number of experiments were conducted to identify suitable procedures for rooting of in vitro produced shoots. The best results in terms of in vitro rooting were obtained with Andersons modified medium with macrosalts reduced to one-half, regardless of the auxin or its concentration in the medium. Although rooting frequency rose to 97% by basal immersion of shoots in auxin concentrated solution followed by in vitro culture on an auxin-free medium, the survival of the plants after 6 months of acclimatization was poor (50%). Best results (100% rooting and survival) were observed for ex vitro rooting. The micropropagated plants from this study were successfully reintroduced into their natural habitat (87% of survival after 8 months). 相似文献
6.
<Emphasis Type="Italic">Agrobacterium</Emphasis>-mediated genetic transformation of <Emphasis Type="Italic">Perilla frutescens</Emphasis> 总被引:3,自引:0,他引:3
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies. 相似文献
7.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis. 相似文献
8.
Summary
In vitro methods were applied to the only remaining plant of the Meelup Mallee (Eucalyptus phylacis), a critically endangered species from the southwest of Western Australia. Shoot explants were initiated into culture using
a 1/2 MS [Murashige and Skoog basal medium (BM) for all experiments] liquid medium supplemented with 1% (w/v) activated charcoal,
which was replenished twice daily, followed by transfer of explants to agar medium supplemented with 0.5 μM zeatin. Explants were cultured under low intensity lighting (PPFD of 5–10 μmol m−2s−1) to minimize blackening of tissues, and some explants were induced to produce nodular green calluses in response to BM supplemented
with 5 μM thidiazuron. Nodular green calluses were induced to form adventitious shoots following transfer to medium supplemented with
0.5 μM zeatin and 1 μM gibberellic acid, A4 isomer (GA4). Development of shoots was completed on 1 μM zeatin + 0.1 μM 6-benzylaminopurine (BA) in vented culture tubes. Regenerated shoots were sequentially cultured on medium containing 0.5
μM zeatin + 0.2 μM indoleacetic acid (IAA) followed by either 0.5 μM zeatin + 1μM GA4 for shoot elongation or 1 μM zeatin + 0.5 μM IAA to optimize shoot growth. Rooted microshoots were produced after 4 weeks on 5 μM indolebutyric acid (IBA) and survived acclimatization and transfer to potting mixture. 相似文献
9.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies. 相似文献
10.
Summary
Hydrastis canadensis L. (Goldenseal) is an endangered medicinal plant used in the treatment of many ailments, such as gastrointestinal disturbances,
urinary disorders, hemorrhage, skin, mouth and eye infections, and inflammation. Commercial preparations of wild-harvested
goldenseal were found to contain heavy metal contaminants including aluminum (848 μgg−1), cadmium (0.4μgg−1), lead (18.7μgg−1), and mercury (0.1 μgg−1). As well, goldenseal is an endangered species listed in the Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES) Appendix II. Therefore, the practice of wild-harvest is actually decimating natural populations of
goldenseal and endangering its genetic diversity. In vitro propagation protocol by tissue culture was developed for producing high-quality tissues of goldenseal. Significantly more
de novo regeneration was induced on stem explants of 3-mo.-old plants cultured on a medium containing 10 μM 6-benzylaminopurine (BA) (22 regenerants per explant) than any other treatment. Subculture of the regenerants on a medium
devoid of growth regulators resulted in the development of complete plants that were acclimatized and thrived in standard
greenhouse conditions. The plants regenerated in vitro contained the lowest levels of heavy metals. The findings of this study provide the first evidence that heavy metal contaminants
bioaccumulate in goldenseal tissues and also provide a method for germplasm conservation, mass multiplication, and production
of goldenseal tissues free from abiotic contamination. 相似文献
11.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and
Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency of responding explants (85%) and maximum number of shoots per explant
(9.5) were obtained on MS medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the orginal cotyledonary
nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being
transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid after 25 d of culture. Fifty percent of shoots were also directly rooted as microcuttings on peat moss,
soil, and compost mixture (1∶1∶1). About 52% plantlets rooted under ex vitro conditions were successfully acclimatized and established in pots. 相似文献
12.
Summary The embryogenic potential of different Echinacea purpurea tissues, viz. leaf, cotyledon, and root, was investigated. Maximum embryo-induction was achieved from leaf dises cultured
on Murashige and Skoog medium supplemented with benzylaminopurine (5.0 μM) and indolebutyric acid (2.5 μM) where 95% of the explants responded, yielding an average of 83 embryos per explant within 4 wk of culture. Incubation of
cultures in the dark for an initial period of 14 d significantly increased the frequency of somatic embryogenesis (6–8-fold
in leaf explants). Exposure of the abaxial surface of leaves to the medium significantly increased the number of embryos.
Transfer of somatic embryos to a medium devoid of growth regulators resulted in 80% germination within 7 d. Over 73% of the
somatic embryos developed roots within 28 d of culture on a medium containing naphthaleneacetic acid (10 μM) with a maximum root number of 9.8 per plantlet. Transplanting ex vitro and acclimatization for a period of 7 d were sufficient to promote establishment of plants in the greenhouse, and more than
90% of the regenerated plants survived. 相似文献
13.
An efficient procedure for direct organogenesis and regeneration of hop (Humulus lupulus L.) was established. For the first time Agrobacterium-mediated genetic transformation of hop (cv. "Tettnanger") was achieved. Shoot internodes from in vitro cultures were identified as the most suitable type of explant for regeneration. Using this type of explant, a shoot-inducing medium was developed that supported direct organogenesis of approximately 50% of the explants. Plantlets were successfully rooted and transferred to the greenhouse. Overall, in less than 6 months hop cultures propagated in vitro were regenerated to plants in the greenhouse. Agrobacterium-mediated genetic transformation was performed with the reporter gene GUS (-glucuronidase). The presence and function of transgenes in plants growing in the greenhouse was verified by PCR (polymerase chain reaction) and enzyme assay for GUS activity, respectively. We have obtained 21 transgenic plants from 1,440 explants initially transformed, yielding an overall transformation efficiency of 1.5%.Abbreviations BAP 6-Benzylaminopurine - GA3 Gibberellic acid - GUS -Glucuronidase - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - TDZ 1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron)Communicated by H. Lörz 相似文献
14.
Plant regeneration from calli of three cultivars of Allium cepa (Senshuki, O·Pki and Shojovaka) was investigated. Callus was induced on four variations of BDS medium containing different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BAP). The regeneration frequency of calli of cvs. Senshuki and O·Pki subcultured on solid MS medium supplemented with BAP ranged from 50% to 80%; this frequency decreased to less than 30% after subculture in the dark in liquid BDS medium. By repeating the dark/light transitions of the culture protocol and by selecting for green cell clusters, we were able to increase the regeneration frequency to more than 80% in all three cultivars. These cell clusters maintained a high regeneration capacity in subsequent subcultures in the absence of light for 2 months. Most (97%) of the regenerated plantlets had a normal diploid karyotype (2n=16) that was identical to that of the mother plants, although 3% of the regenerated plants of cv. Shojovaka had a tetraploid karyotype.Abbreviations BAP 6-Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid 相似文献
15.
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following
co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved
after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength
MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical
assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%. 相似文献
16.
Xiaohuan Wang Zhenhua Gao Yunzhen Wang Ray A. Bressan Stephen C. Weller Xia Li 《In vitro cellular & developmental biology. Plant》2009,45(4):435-440
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on
stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and
regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut
water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots
per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically
similar to Black Mitcham parents. 相似文献
17.
Summary Callus of Phalaenopsis Nebula was induced from seed-derived protocorms on 1/2 Murashige and Skoog (MS) basal medium plus 0–1.0 mg l−1 (0–4.52 μM) N-phenyl-N′-1,2,3,-thiadiazol-5-yl urea (TDZ) and/or 0–10 mg l−1 (0–45.24 μ M) 2,4-dichlorophenoxyacetic acid (2,4-D). Protocorms 2 mo. old performed better than 1-mo.-old protocorms for callus induction.
More calluses formed on 1/2 MS basal medium supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. These calluses could be maintained by subculturing every month with basal medium supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.5 mg l−1 (2.26 μM) 2,4-D. Protocorm-like bodies were formed, and plants regenerated from these calluses on 1/2 MS basal medium alone or supplemented
with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. Plantlets were then potted on sphagnum moss in the greenhouse and grew well. No chromosomal abnormalities were found
among the root-tip samples of 21 of the regenerated plantlets that were successfully acclimatized. 相似文献
18.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
19.
Cypripedium macranthos var. rebunense is an endangered plant endemic to Rebun Island, Japan. A proper understanding of genetic diversity is needed when conducting
conservation programs for rare and endangered species. We therefore examined the genetic diversity of C. macranthos var. rebunense using allozyme markers with a view to future conservation. Our study revealed that C. macranthos var. rebunense has relatively high genetic diversity (P was 0.62, n
a and n
e were 1.85 and 1.28 respectively, and H
o and H
e were 0.163 and 0.187, respectively) when compared with other plant taxa. The natural habitats of C. macranthos var. rebunense are geographically separated into northern and the southern populations. Disappearance of alleles and increase in homozygosity
expected as a result of the bottleneck effect were observed, particularly in the southern populations composed of a small
number of plants. As additional negative effects (inbreeding depression and further genetic drift) due to fragmentation are
predicted in these populations, the southern populations may show deterioration of genetic diversity in the near future. 相似文献
20.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and
Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency for shoot regeneration (85%) and maximum number of shoots per explant
(9.5) were obtained on the medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the original cotyledonary
nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being
transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid (IBA) after 25 d of culture. Fifty percent of shoots were also directly rooted as microtuttings on
a peat moss, soil, and compost mixture (1∶1∶1). About 52% of plantlets were successfully acclimatized and established in pots. 相似文献