首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The honeybee, Apis mellifera L., is one of the living creatures that has its colour vision proven through behavioural tests. Previous studies of honeybee colour vision has emphasized the relationship between the spectral sensitivities of photoreceptors and colour discrimination behaviour. The current understanding of the neural mechanisms of bee colour vision is, however, rather limited. The present study surveyed the patterns of chromatic information processing of visual neurons in the lobula of the honeybee, using intracellular recording stimulated by three light-emitting diodes, whose emission spectra approximately match the spectral sensitivity peaks of the honeybee. The recorded visual neurons can be divided into two groups: non-colour opponent cells and colour opponent cells. The non-colour opponent cells comprise six types of broad-band neurons and four response types of narrow-band neurons. The former might detect brightness of the environment or function as chromatic input channels, and the latter might supply specific chromatic input. Amongst the colour opponent cells, the principal neural mechanism of colour vision, eight response types were recorded. The receptive fields of these neurons were not centre surround as observed in primates. Some recorded neurons with tonic post-stimulus responses were observed, however, suggesting temporal defined spectral opponency may be part of the colour-coding mechanisms.  相似文献   

2.
Equations have been derived that improve the quantification of sensory equidistant colour and lightness differences. This has been achieved by a physiological approach involving non-linear responses of cone mechanisms and two subsequent stages of linear opponent transformation to describe the Munsell System (Seim and Valberg, 1980). Using the formulation for the first opponent stage, colours induced into an achromatic center field by a chromatic surround varying in purity, are shown to follow the same power function of the opponent coordinates for all hues. By analogy, a physiological model for colour coding and colour induction is offered. Double opponent neurones with spatially antagonistic, spectrally opponent and symmetric receptive fields constitute the units of the model. Colour induction is related to lateral excitation and colour differences to response differences of these units.  相似文献   

3.
We designed visual evoked potentials experiments to study the differential aspects of colour and brightness coding in man. The substitution of equally bright red and green stimuli for a background yellow was investigated and compared with different luminance increments and decrements of red and green. A dominant N87 component was found for a colour change from yellow to brighter red colours, which was less pronounced for green and absent for yellow luminance changes. It is also absent for pure red luminance increments and green luminance changes, but reappears with red luminance decrements or red-offset. The data are discussed within the framework of a new concept of how the visual system fuses red-green information and black-white border information. Retinal X-cells can transmit colour and high spatial frequency achromatic information simultaneously by encoding only the presence of edges (a.c.) for the black-white stimuli and the presence of both edges (a.c.) and uniform areas of colour (d.c.) for red-green stimuli. Phylogenetically this kind of information transmission enables colour vision to be implemented in a retina such as the cat's by adding only a second class of cones. Barlow's economy principle will be violated for colour in the periphery, but restored early in the striate cortex where there is an early decoding of the combined chromatic and achromatic information by the concentric double opponent cells. The N87 behaviour correlates with the proposed discharge of peripheral X-type cells, but not with the discharge of cortical double opponent concentric or simple cells, which no longer respond to homogeneous colour stimuli. It is suggested that N87 may be generated by geniculate afferents in the dendritic arborization of cortical cells, reflecting the behaviour of peripheral units, and thus the violation of the economy principle, rather than the next step in cortical processing. The early cortical restoration of the economy principle is supported by the absence of any further dissociated behaviour for colour and brightness in later components.  相似文献   

4.
Visual Ecology and Perception of Coloration Patterns by Domestic Chicks   总被引:3,自引:0,他引:3  
This article suggests how we might understand the way potential predators see coloration patterns used in aposematism and visual mimicry. We start by briefly reviewing work on evolutionary function of eyes and neural mechanisms of vision. Often mechanisms used for achromatic vision are accurately modeled as adaptations for detection and recognition of the generality of optical stimuli, rather than specific stimuli such as biological signals. Colour vision is less well understood, but for photoreceptor spectral sensitivities of birds and hymenopterans there is no evidence for adaptations to species-specific stimuli, such as those of food or mates. Turning to experimental work, we investigate how achromatic and chromatic stimuli are used for object recognition by foraging domestic chicks (Gallus gallus). Chicks use chromatic and achromatic signals in different ways: discrimination of large targets uses (chromatic) colour differences, and chicks remember chromatic signals accurately. However, detection of small targets, and discrimination of visual textures requires achromatic contrast. The different roles of chromatic and achromatic information probably reflect their utility for object recognition in nature. Achromatic (intensity) variation exceeds chromatic variation, and hence is more informative about change in reflectance – for example, object borders, while chromatic signals yield more information about surface reflectance (object colour) under variable illumination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Goyret J  Kelber A 《PloS one》2012,7(4):e34629
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.  相似文献   

6.
Summary A chromaticity diagram which plots the 3 photoreceptor excitations of trichromatic colour vision systems at an angle of 120° is presented. It takes into acount the nonlinear transduction process in the receptors. The resulting diagram has the outline of an equilateral hexagon. It is demonstrated by geometrical means that excitation values for any type of spectrally opponent mechanism can be read from this diagram if the weighting factors of this mechanism add up to zero. Thus, it may also be regarded as a general representation of colour opponent relations, linking graphically the Young-Helmholtz theory of trichromacy and Hering's concept of opponent colours. It is shown on a geometrical. basis that chromaticity can be coded unequivocally by any two combined spectrally opponent mechanisms, the main difference between particular mechanisms being the extension and compression of certain spectral areas. This type of graphical representation can qualitatively explain the Bezold-Brücke phenomenon. Furthermore, colour hexagon distances may be taken as standardized perceptual colour distance values for trichromatic insects, as is demonstrated by comparison with behavioural colour discrimination data of 3 hymenopteran species.  相似文献   

7.
It is hypothesized that colour vision and opponent processing of colour signals in the visual system evolved as a means of overcoming the extremely unfavourable lighting conditions in the natural environment of early vertebrates. The significant flicker of illumination inherent in the shallow-water environment complicated the visual process in the achromatic case, in particular preventing early detection of enemies. The presence of two spectral classes of photoreceptors and opponent interaction of their signals at a subsequent retinal level allowed elimination of the flicker from the retinal image. This new visual function provided certain advantages concerning reaction times and favoured survival. This assumption explains why the building blocks for colour vision arose so early, i.e. just after the active predatory lifestyle was mastered. The principal functions of colour vision inherent in extant animals required a more complex neural machinery for colour processing and evolved later as the result of a change in visual function favouring colour vision.  相似文献   

8.
Current opinion holds that human colour vision is mediated primarily via a colour-opponent pathway that carries information about both wavelength and luminance contrast (type I). However, some authors argue that chromatic sensitivity may be limited by a different geniculostriate pathway, which carries information about wavelength alone (type II). We provide psychophysical evidence that both pathways may contribute to the perception of moving, chromatic targets in humans, depending on the nature of the visual discrimination. In experiment 1, we show that adaptation to drifting, red-green stimuli causes reductions in contrast sensitivity for both the detection and direction discrimination of moving chromatic targets. Importantly, the effects of adaptation are not directionally specific. In experiment 2, we show that adaptation to luminance gratings results in reduced sensitivity for the direction discrimination, but not the detection of moving chromatic targets. We suggest that sensitivity for the direction discrimination of chromatic targets is limited by a colour-opponent pathway that also conveys luminance-contrast information, whereas the detection of such targets is limited by a pathway with access to colour information alone. The properties of these pathways are consistent with the known properties of type-I and type-II neurons of the primate parvocellular lateral geniculate nucleus and their cortical projections. These findings may explain the known differences between detection and direction discrimination thresholds for chromatic targets moving at low to moderate velocities.  相似文献   

9.
The diurnal hummingbird hawkmoth Macroglossum stellatarum can learn the achromatic (intensity-related) and the chromatic (wavelength-related) aspect of a spectral colour. Free-flying moths learn to discriminate two colours differing in the chromatic aspect of colour fast and with high precision. In contrast, they learn the discrimination of two stimuli differing in the achromatic aspect more slowly and less reliably. When trained to use the chromatic aspect, they disregard the achromatic aspect, and when trained to use the achromatic aspect, they disregard the chromatic aspect, at least to some degree. In a conflicting situation, hummingbird hawkmoths clearly rely on the chromatic aspect of colour. Generally, the moths pay attention to the most reliable cue that allows them to discriminate colours in the learning situation. This is usually the chromatic aspect of the colour but they can learn to attend to the achromatic aspect instead. There is no evidence for relative colour learning, i.e. moths do not learn to choose the longer or shorter of two wavelengths, but it is possible that they learn to choose the darker or brighter shade of a colour, and thereby its relative intensities.  相似文献   

10.
Analysis of the colour and motion of objects is widely believed to take place within segregated processing pathways in the primate visual system. However, it is apparent that this segregation cannot remain absolute and that there must be some capacity for integration across these sub-modalities. In this study, we have assessed the extent to which colour constitutes a separable entity in human motion processing by measuring the chromatic selectivity of two kinds of after-effect resulting from motion adaptation. First, the traditional motion after-effect, where prolonged inspection of a unidirectional moving stimulus results in illusory motion in the opposite direction, was found to exhibit a high degree of chromatic selectivity. The second type of after-effect, in which motion adaptation induces misperceptions in the spatial position of stationary objects, was completely insensitive to chromatic composition. This dissociation between the chromatic selectivities of these after-effects shows that chromatic inputs remain segregated at early stages of motion analysis, while at higher levels of cortical processing there is integration across chromatic, as well as achromatic inputs, to produce a unified perceptual output.  相似文献   

11.
Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants.  相似文献   

12.
The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue) stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level.  相似文献   

13.
Vision plays a paramount role in some spider families such as the Salticidae, Lycosidae and Thomisidae, as it is involved in prey hunting, orientation or choice of substrate. In the thomisid Misumena vatia, for which the substrate colour affects the body colour, vision seems to mediate morphological colour changes. However, nothing is known about which component of visual signals from the substrate might be perceived, nor whether M. vatia possesses the physiological basis for colour vision. The aim of this study is thus to investigate the vision of this spider species by measuring the spectral sensitivities of the different pairs of eyes using electrophysiological methods. Extra- and intracellular electrophysiological recordings combined with selective adaptation revealed the presence of two classes of photoreceptor cells, one sensitive in the UV region of the spectrum (around 340 nm) and one sensitive in the green (around 520 nm) regions in the four pairs of eyes. We conclude that M. vatia possesses the physiological potential to perceive both chromatic and achromatic components of the environment.  相似文献   

14.
Coloured surfaces in the normal environment may be brighter or dimmer than the mean adaptation level. Changes in the firing rate of cells of the parvocellular layers of macaque lateral geniculate nucleus were studied with such stimuli; chromatic mixtures briefly replaced a white adaptation field. This paradigm is therefore one of successive contrast. Families of intensity-response curves for different wavelengths were measured. When taking sections at different luminance ratios through these families of curves, strongly opponent cells displayed spectrally selective responses at low luminance ratios, while weakly opponent cells had higher chromatic thresholds and responded well to stimuli at higher luminance ratios, brighter than the adaptation field. Strength of cone opponency, defined as the weight of the inhibitory cone mechanism relative to the excitatory one, was thus related to the range of intensity in which cells appeared to operate most effectively. S-cone inputs, as tested with lights lying along tritanopic confusion lines, could either be excitatory or inhibitory. Families of curves for different wavelengths can be simulated mathematically for a given cell by a simple model by using known cone absorption spectra. Hyperbolic response functions relate cone absorption to the output signals of the three cone mechanisms, which are assumed to interact linearly. Parameters from the simulation provided estimates of strength of cone opponency and cone sensitivity which were shown to be continuously distributed. Cell activity can be related to cone excitation in a trichromatic colour space with the help of the model, to give an indication of suprathreshold coding of colour and lightness.  相似文献   

15.
Using digital photography to study animal coloration   总被引:1,自引:0,他引:1  
In understanding how visual signals function, quantifying the components of those patterns is vital. With the ever-increasing power and availability of digital photography, many studies are utilizing this technique to study the content of animal colour signals. Digital photography has many advantages over other techniques, such as spectrometry, for measuring chromatic information, particularly in terms of the speed of data acquisition and its relatively cheap cost. Not only do digital photographs provide a method of quantifying the chromatic and achromatic content of spatially complex markings, but also they can be incorporated into powerful models of animal vision. Unfortunately, many studies utilizing digital photography appear to be unaware of several crucial issues involved in the acquisition of images, notably the nonlinearity of many cameras' responses to light intensity, and biases in a camera's processing of the images towards particular wavebands. In the present study, we set out step-by-step guidelines for the use of digital photography to obtain accurate data, either independent of any particular visual system (such as reflection values), or for particular models of nonhuman visual processing (such as that of a passerine bird). These guidelines include how to: (1) linearize the camera's response to changes in light intensity; (2) equalize the different colour channels to obtain reflectance information; and (3) produce a mapping from camera colour space to that of another colour space (such as photon catches for the cone types of a specific animal species).  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 211–237.  相似文献   

16.
Drosophila vision is mediated by inputs from three types of photoreceptor neurons; R1-R6 mediate achromatic motion detection, while R7 and R8 constitute two chromatic channels. Neural circuits for processing chromatic information are not known. Here, we identified the first-order interneurons downstream of the chromatic channels. Serial EM revealed that small-field projection neurons Tm5 and Tm9 receive direct synaptic input from R7 and R8, respectively, and indirect input from R1-R6, qualifying them to function as color-opponent neurons. Wide-field Dm8 amacrine neurons receive input from 13-16 UV-sensing R7s and provide output to projection neurons. Using a combinatorial expression system to manipulate activity in different neuron subtypes, we determined that Dm8 neurons are necessary and sufficient for flies to exhibit phototaxis toward ultraviolet instead of green light. We propose that Dm8 sacrifices spatial resolution for sensitivity by relaying signals from multiple R7s to projection neurons, which then provide output to higher visual centers.  相似文献   

17.
Some parasite cuckoo species lay eggs that, to the human eye, appear to mimic the appearance of the eggs of their favourite hosts, which hinders discrimination and removal of their eggs by host species. Hitherto, perception of cuckoo-host egg mimicry has been estimated based on human vision or spectrophotometry, which does not account for what the receivers' eye (i.e. hosts) actually discriminates. Using a discrimination model approach that reproduces host retinal functioning, and museum egg collections collected in the south of Finland, where at least six different races of the European cuckoo (Cuculus canorus) coexist, I first assess whether the colour design of cuckoo eggs of different races maximizes matching for two favourite avian hosts, viz. the redstart (Phoenicurus phoenicurus) and the pied wagtail (Motacilla alba). Second, I assess the role of nest luminosity on host perception of mimicry by the same two hosts. Phoenicurus-cuckoo eggs showed a better chromatic matching with the redstart-host eggs than other cuckoo races, and in most cases can not be discriminated. Sylvia-cuckoo eggs, however, showed better achromatic matching with redstart-host eggs than Phoenicurus-cuckoo eggs. Also, Motacilla-cuckoo eggs showed poorer chromatic and achromatic matching with pied wagtail-host eggs than Sylvia-cuckoo eggs. Nest luminosity affected chromatic and achromatic differences between cuckoo and host eggs, although only minimally affected the proportion of cuckoo eggs discriminated by chromatic signals. These results reveal that cuckoo races as assessed by humans do not entirely match with host perception of matching and that achromatic mechanisms could play a main role in the discrimination of cuckoo eggs at low-light levels.  相似文献   

18.
Many insects’ motion vision is achromatic and thus dependent on brightness rather than on colour contrast. We investigate whether this is true of the butterfly Papilio xuthus, an animal noted for its complex retinal organization, by measuring head movements of restrained animals in response to moving two-colour patterns. Responses were never eliminated across a range of relative colour intensities, indicating that motion can be detected through chromatic contrast in the absence of luminance contrast. Furthermore, we identify an interaction between colour and contrast polarity in sensitivity to achromatic patterns, suggesting that ON and OFF contrasts are processed by two channels with different spectral sensitivities. We propose a model of the motion detection process in the retina/lamina based on these observations.  相似文献   

19.
Collinear facilitation of contrast detection of achromatic stimuli has been studied over the past decade by different groups. We measured collinear facilitation of chromatic contrast detection under equal-luminance (photometric quantity) and under isoluminance (minimum motion technique) conditions, as two different controls. The facilitation was tested for chromatic contrast detection of a foveal Gabor signal flanked by two high chromatic-contrast Gabor signals. The results indicated a significant facilitation in the presence of spatial adjacent collinear chromatic contrast signals, when the flankers were located at a short distance, across all observers for three chromatic channels. The facilitation was compared to a non-collinear flanker configuration. The results indicated no facilitation effect at the opposing phase configuration, at a short flanker distance, whereas a small facilitation was observed with a configuration at a longer flanker distance. The findings suggest that the performance and specificity of chromatic collinear facilitation is not impaired with regard to achromatic mechanisms.  相似文献   

20.
While some lower vertebrates, such as zebrafish, do not appear to possess anatomically separate pathways of processing visual information (such as M-pathways and P-pathways), it is believed that separate processing of the visual stimulus (such as luminance and chromatic processing) is a basic requirement of vertebrate vision. In this study, spectral sensitivity functions were obtained from electroretinogram responses to heterochromatic flicker photometry stimuli at several flicker rates, including a low flicker rate (2 Hz), in an attempt to predominantly stimulate chromatic processes and a high flicker rate (16 Hz), in an attempt to predominantly stimulate luminance processes. In addition, chromatic adaptation was used to isolate and examine the temporal properties of the different cone-type contributions to the electroretinogram response. Spectral sensitivity functions based on responses to heterochromatic stimuli of a low flicker rate appeared to receive both opponent and nonopponent contributions; however, when the stimulus flicker rate was high, spectral sensitivity appeared to be a function of only nonopponent mechanisms. Also, the differences in cone contributions to the spectral sensitivity functions across the different flicker rates appear to be related to the temporal properties of the cone contributions to the electroretinogram response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号