首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage phagocytic activity is regulated by a variety of products derived from activated lymphocytes. It has been reported that nonactivated splenic B and T lymphocytes enhance macrophage glucose metabolism. In addition, the enhancement of macrophage glucose metabolism was further increased by direct effects of bacterial lipopolysaccharide (LPS) on B, but not T, lymphocytes. In the present study, the effect of purified murine splenic B and T lymphocytes on Fc-dependent phagocytosis by thioglycollate-elicited peritoneal macrophages in the presence or absence of LPS has been investigated. Fc-dependent phagocytosis was assayed by measuring the ingestion of 51Cr-tagged sheep erythrocytes. After 3 or 4 days in culture, nonadherent spleen cells (NASC) and B and T lymphocytes from C3H/HeN (LPS-responder) mice produced 92 +/- 27%, 83 +/- 13%, and 147 +/- 33% increases in C3H/HeJ (LPS-hyporesponder) macrophage phagocytic activity, respectively. A similar effect was observed in Balb/c mice. Cell-free supernatant from NASC and B lymphocytes precultured for 2 or 4 days produced a 74 +/- 20% and 157 +/- 42% increase in phagocytosis respectively. At concentrations which have been previously shown to markedly enhance the ability of splenic B lymphocytes to stimulate macrophage glucose metabolism, Escherichia coli K235 LPS (10 micrograms/ml) did not alter the stimulatory effects of any of the splenic lymphocyte populations on macrophage Fc-dependent phagocytosis. These data suggest that B lymphocytes produce a soluble factor(s) which stimulates macrophage phagocytosis. In addition, LPS has different effects on the regulation of macrophage phagocytic activity and metabolism by B lymphocytes.  相似文献   

2.
Whole blood phagocytosis (P) and oxidative burst (OB), a rapid and sensitive flow cytometric method for quantifying neutrophil activation, was modified for single laser systems by using propidium iodide labeled Staphylococcus aureus and 2',7' dichlorofluorescein diacetate. The purpose of the present study was to characterize this assay with respect to the stimulatory activity of bacterial lipopolysaccharide (LPS) on phagocytosis. Blood from healthy donors was preincubated with log doses of bacterial LPS B (0.1-1,000 ng/ml) or sterile pyrogen-free saline at 37 degrees C from 0-120 minutes. LPS increased both P and OB in a dose-dependent manner (up to 62 and 121%, respectively) at all time points tested, and this effect on P and OB could be detected even with no preincubation. This LPS-induced phagocytic activity could be blocked by the addition of polymyxin B (10 micrograms/ml) during preincubation. The priming effect of LPS was maximal at 45 min. P and OB were inhibited by preincubation with EDTA at doses greater than 2 mM (60 and 80% inhibition, respectively). These observations are consistent with the exquisite sensitivity of the neutrophil to endotoxin. This method can evaluate neutrophil response to immunomodulatory and chemotherapeutic agents in a physiological milieu. These findings re-emphasize the necessity of using pyrogen-free reagents in any study of neutrophil function.  相似文献   

3.
Intravenous injection of acetylated low density lipoproteins (acLDL) in mice in a dose of 0.5 mg per mouse decreased the intensity of humoral immune response to sheep red blood cells (SRBC) by 35%. The addition of acLDL to mouse peritoneal macrophages in vitro resulted in inhibition of Fc-dependent phagocytosis of SRBC and fourfold increased secretion of prostaglandins E2 by macrophages. Fc-dependent phagocytosis of SRBC was also found to be inhibited by oxysterols (25-hydroxycholesterol and 7-ketocholesterol), added to the incubation medium of macrophages in vitro in doses of 0.5-5 mg/ml. The conclusion was made that oxidative metabolism of cholesterol and arachidonic acid, contained in LDL, may mediate the immunomodulating effects of modified LDL.  相似文献   

4.
Lymphocytes, activated by lectins or specific antigens, have been shown to enhance macrophage phagocytosis through the elaboration of a heat-labile soluble factor(s). Recent evidence from our laboratory revealed that resident (nonactivated) murine thymocytes and splenic lymphocytes increase peritoneal macrophage glucose metabolism through the elaboration of a heat-stable soluble factor(s). Therefore, we investigated the effect of resident lymphocyte subpopulations on macrophage Fc-dependent phagocytosis. Thioglycollate-elicited and resident peritoneal macrophages from BALB/c mice were cultured in serum-free media with syngeneic resident thymocytes or splenic T lymphocytes. Macrophage Fc-dependent phagocytosis was assayed by measuring the ingestion of 51CrSHEA. After 4 days in vitro, resident thymocytes produced a mean 160 (+/- 31) and 136% (+/- 22) increase in Fc-dependent phagocytosis by thioglycollate-elicited (thio-macrophages) and resident peritoneal macrophages, respectively. Splenic T lymphocytes increased thio-macrophage phagocytosis by 112% (+/- 41) under similar conditions. Macrophage Fc-dependent phagocytosis was increased after 24 hr of co-culture by supernatant derived from resident thymocytes and could be further enhanced by supernatant from Con A-activated thymocytes. Supernatant from guinea pig embryo fibroblasts did not increase macrophage phagocytosis. The soluble factor(s) was produced by resident thymocytes after 24 hr of preculture. This factor was active despite heating at 100 degrees C for 30 min whereas the effect of Con A-activated thymocyte supernatant was heat-labile. The stimulatory effect of resident thymocyte supernatant was not observed when the macrophages and supernatant were cultured in 2% FCS. In contrast to the factor(s) produced by resident thymocytes, the factor(s) in FCS that increased phagocytosis was heat-labile. These data suggest thymocytes and splenic T lymphocytes promote macrophage Fc-dependent phagocytosis in the absence of antigenic or lectin stimulation. This previously unrecognized effect of resident thymocytes is due to a unique heat-stable soluble factor(s) that is concealed in the presence of serum.  相似文献   

5.
Rabbit macrophages (M?) and lymphocytes (Ly) incubated with three structurally dissimilar immunomodulators, lipopolysaccharide (bacterial endotoxin, LPS), polyinosinic: polycytidylic acid (poly-I:C) and muramyl dipeptide (MDP), were found to accumulate inositol phosphates (IPs) in a concentration- and time-dependent manner. The threshold concentration of LPS necessary for an increase in IPs in both cell types was less than 1 ng/ml and a maximum effect was observed between 1 and 10 micrograms/ml. The threshold concentrations for poly-I:C and MDP were between 0.1 and 1 microgram/ml for both cell types. Significant increases in the concentration of inositol phosphates occurred between 30 and 60 min after challenge of either cell type with any of the three agents studied. In addition, all three immunomodulators produced a greater accumulation of IPs in macrophages than in mixed lymphocytes and after 2 h appeared to approach a maximum in macrophages, whereas the IPs level in lymphocytes appeared to be still rising after 2 h. In M? and Ly the IPs level was increased within 10 min of incubation in the presence of either PGE2 or medium previously obtained from cells incubated with LPS. In addition, anisomycin (a protein synthesis inhibitor) and ketoprofen (a cyclo-oxygenase inhibitor) inhibited the LPS-stimulated increase of IPs accumulation in both cell types. These two observations suggest that the LPS-stimulated increase in IPs in macrophages and lymphocytes is mediated by a protein intermediate and possibly a prostanoid.  相似文献   

6.
Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis   总被引:15,自引:0,他引:15  
Sulfatide from the outer surface of Mycobacterium tuberculosis blocked priming in cultured human monocytes. Monocytes were primed in vitro with either lipopolysaccharide (LPS) or interferon-gamma. Primed monocytes released increased amounts of superoxide anion (O2-) when stimulated with formyl-methionyl-leucyl-phenylalanine or with phorbol myristate acetate. Primed monocytes also showed increased phagocytosis of sheep erythrocytes and increased release of interleukin 1. When primed monocytes were treated with 10 micrograms/ml of sulfatide, these enhanced functions, characteristic of primed monocytes, returned to levels found in unprimed monocytes. (With respect to these functions and others, monocytes or macrophages primed in vitro by exposure to LPS or interferon-gamma resemble macrophages activated in vivo by infection. In vivo, activated macrophages provide non-specific resistance to infection). Inhibition of priming by sulfatide could be detected within 10 min, but maximum effect of sulfatide required 3 to 5 hr. Sulfatide had no effect on O2- release, if it was added after the cells had been stimulated by PMA, suggesting that sulfatide did not inhibit enzymes involved in formation of O2-, but rather that sulfatide inhibited priming. Increasing the amounts of LPS or interferon-gamma did not counteract the effects of sulfatide. Sulfatide did cause monocytes to release some prostaglandin E2 (less than 1 nM), but the amount was not sufficient to inhibit monocyte functions. The effect of sulfatide was not blocked by indomethacin. Other sulfated compounds and other products of mycobacteria did not produce the sulfatide effect. We conclude that M. tuberculosis has on its outer surface a chemical that directly interferes with monocyte priming. In vivo, M. tuberculosis might use sulfatide to block macrophage activation and thereby resist being killed by macrophages.  相似文献   

7.
Adiponectin exerts anti-inflammatory effects via macrophages, suppressing the production of pro-inflammatory cytokines in response to bacterial lipopolysaccharide (LPS). Here, we provide experimental evidence that the "anti-inflammatory" effect of adiponectin may be due to an induction of macrophage tolerance: globular adiponectin (gAd) is a powerful inducer of TNF-alpha and IL-6 secretion in primary human peripheral macrophages, in the THP-1 human macrophage cell line, and in primary mouse peritoneal macrophages. Pre-exposure of macrophages to 10 microg/ml gAd rendered them tolerant to further gAd exposure or to other pro-inflammatory stimuli such as TLR3 ligand polyI:C and TLR4 ligand LPS, while pre-exposure to 1 microg/ml of and re-exposure to 10 microg/ml gAd unmasked its pro-inflammatory properties. GAd induced NF-kappaB activation and tolerance to further gAd or LPS exposure. Our data suggest that adiponectin constant presence in the circulation in high levels (in lean subjects) renders macrophages resistant to pro-inflammatory stimuli, including its own.  相似文献   

8.
We recently reported an abnormal production of interleukin-1 (IL-1) in peripheral macrophages of several neurological mutant mice that exhibit patterns of neuronal degeneration, especially in the cerebellum. After in vitro activation by lipopolysaccharide acid (LPS), these macrophages hyperexpress IL-1 beta mRNA and hyperproduce IL-1 protein in comparison with +/+ controls. In the present study, focused on the staggerer mutant mice, we investigate if this genetic dysregulation is specific for IL-1 beta or if it reflects a generalized hyperexcitability of these macrophages. The hyperexpression of IL-1 beta mRNA in sg/sg macrophages is present whatever the duration of LPS stimulation, even for periods as short as 15 min, although it reaches a maximum after 4 h of stimulation. The hyperinducibility of sg/sg macrophages is observed even when very low doses of LPS are used (0.01 microgram/ml) and reaches its maximum for 5 micrograms/ml LPS. Synthetic molecules (muramyl dipeptides), such as N-acetylmuramyl-L-alanyl-D-isoglutamine or murabutide, known as macrophage activators, are also efficient in revealing the cytokine hyperexpression in sg/sg macrophages. In addition, hyperexpression of two other cytokines, i.e., tumor necrosis factor-alpha and IL-1 alpha mRNAs, is also detected in LPS-stimulated macrophages of mutant mice. Finally, the effect of an inhibitor of protein synthesis, cycloheximide, is similar in +/+ and sg/sg macrophages. As a whole, these data lead us to conclude that the sg/sg macrophages are in a state of general hyperexcitability when compared with +/+ ones.  相似文献   

9.
Abstract The core oligosaccharides of low-molecular-weight lipopolysaccharide (LPS), also termed lipooligosaccharide (LOS), of pathogenic Neisseria spp. mimic the carbohydrate moieties of glycosphingolipids present on human cells. Such mimicry may serve to camouflage the bacterial surface from the host. The LOS component is antigenically and/or chemically identical to lactoneoseries glycosphingolipids and can become sialylated in Neisseria gonorrhoeae when the bacterium is grown in the presence of cytidine 5′-monophospho- N -acetylneuraminic acid, the nucleotide sugar of sialic acid. Strains of Neisseria meningitidis and Haemophilus influenzae also express similarly sialylated LPS. Sialylation of the LOS influences susceptibility to bactericidal antibody, may decrease or prevent phagocytosis, cause down-regulation of complement activation, and decrease adherence to neutrophils and the subsequent oxidative burst response. The core oligosaccharides of LPS of Campylobacter jejuni serotypes which are associated with the development of the neurological disorder, Guillain-Barré syndrome (GBS), exhibit mimicry of gangliosides. Cross-reactive antibodies between C. jejuni LPS and gangliosides are considered to play an important role in GBS pathogenesis. In contrast, the O-chain of a number of Helicobacter pylori strains exhibit mimicry of Lewisx and Lewisy blood group antigens. The role of this mimicry remains to be investigated, but may play a role in bacterial camouflage, the induction of autoimmunity and immune suppression in H. pylori -associated disease.  相似文献   

10.
Tyrosine kinase activation in LPS stimulated rat kupffer cells   总被引:2,自引:0,他引:2  
Kupffer cells, a majority of the body's fixed macrophages, are a major site of bacterial lipopolysaccharide (LPS) metabolism and are mediators in the body's response to sepsis. Uptake of LPS is different in Kupffer cells than other macrophages. Signal transduction in other macrophages in response to LPS involves phosphorylation of proteins in the 50–60 kDa range. We hypothesized that Kupffer cells may have unique signal transduction pathways in response to LPS. Rat Kupffer cells were exposed to LPS (1 μg/mL) for varying times ranging from 15 to 90 min. Cell lysates were Western blotted using an anti-phosphotyrosine antibody. The blots showed an increase in the amount of tyrosine phosphorylation on two proteins of 119 kDa and 83 kDa. The effects of varying LPS concentration (1 ng/mL-1 μg/mL) showed an increasing amount of phosphorylation with increasing LPS concentration. To associate the importance of tyrosine phosphorylation in the response of Kupffer cells to LPS, the tyrosine kinase inhibitors, tyrphostin, lavendustin, and genisten were used to study the effects of inhibiting phosphorylation on TNF-α production. Kupffer cells were preincubated in the presence of the inhibitor and exposed to LPS (1 μg/mL). TNF-α was measured in the conditioned media by ELISA. A 70% or greater decrease in TNF-α production was observed. When phagocytosis of latex beads by rat Kupffer cells was measured in vivo using intravital video microscopy, LPS treatment significantly increased uptake. This increase in phagocytosis was inhibited by tyrphostin. These results show what may be unique phosphorylation events in Kupffer cells that are related to LPS induced production of TNF-α. Presented in part at the American Association for the Study of Liver Diseases Annual Meeting, Chicago, IL (USA), November 3–7, 1995.  相似文献   

11.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

12.
Macrophage synthesis of nitrite and nitrate after activation by BCG infection or by treatment in vitro with both T cell-derived (lymphokines (LK) or recombinant murine interferon-gamma (IFN-gamma] and bacterial (lipopolysaccharide (LPS) and heat-killed bacillus Calmette-Guerin (hk BCG] agents was studied by using macrophages from C3H/He and C3H/HeJ mice. Spleen and peritoneal macrophages isolated from BCG-infected donors that were producing nitrate continued to synthesize nitrite and nitrate in culture. LPS treatment in vitro (25 or 50 micrograms/ml) additionally increased this nitrite/nitrate synthesis. Thioglycolate-elicited macrophages from non-infected C3H/HeJ mice treated with LK also produced nitrite/nitrate, and concurrent LPS (0.1 to 50 micrograms/ml) treatment resulted in enhanced synthesis. Recombinant IFN-gamma also stimulated nitrite/nitrate synthesis by C3H/He and CeH/HeJ macrophages as did LPS (C3H/He only) and hk BCG. When given concurrently with either LPS or hk BCG, IFN-gamma enhanced C3H/He and C3H/HeJ macrophage nitrite/nitrate synthesis over that produced by macrophages treated with either LPS or hk BCG alone. Macrophages activated in vitro exhibited a 4 to 12 hr lag time before engaging in nitrite/nitrate synthesis, which then proceeded for 36 to 42 hr at linear rates. Daily medium renewal did not alter the synthesis kinetics but increased the total amount of nitrite/nitrate produced. Nitrate and nitrite were stable under the conditions of culture and when added did not influence additional macrophage synthesis. Taken together, these results indicate that T cell lymphokines and IFN-gamma are powerful modulators of macrophage nitrite/nitrate synthesis during BCG infection and in vitro, and nitrite/nitrate synthesis appears to be common property of both primed and fully activated macrophage populations.  相似文献   

13.
U F Schade 《Prostaglandins》1987,34(3):385-400
The influence of lipopolysaccharide (LPS, endotoxin) or its lipid A component (bacterial and synthetic) on the synthesis of zymosan induced leukotriene C4, prostaglandin E2 and prostacyclin and on the conversion of exogenous arachidonic acid was studied in mouse peritoneal macrophages. It was found that following preincubation with LPS the amount of leukotriene C4 released during phagocytosis of zymosan was substantially decreased. The levels of prostaglandin E2 and prostacyclin, however, were the same in LPS-treated cells and controls. Likewise, pretreatment with LPS impaired the capacity to convert exogenously added arachidonic acid to mono- and di-HETE's. Lipid A (bacterial and synthetic) exhibited the same activity as LPS. LPS had no effect on macrophages of the endotoxin low responder mouse strain (C3H/HeJ). Several explanations could be possible for the observed LPS effect. The finding that low doses of alpha-tocopheryl acetate prevented the LPS-induced decrease of LTC4 synthesis indicates a protective role of this agent. We would, therefore, favour the idea that lipoxygenases undergo oxidative selfinactivation during LPS action.  相似文献   

14.
Legionella pneumophila is a facultative intracellular pathogen which readily grows in human and guinea pig macrophages and in peritoneal exudate macrophages from A/J mice. Macrophage cultures capable of supporting the growth of Legionella can be used to test the potency of biologically active substances suspected of modulating host mechanisms of resistance to infection. Accordingly, this model was used to evaluate the influence of delta-9-tetrahydro-cannabinol (THC) on macrophage resistance to infection with an intracellular pathogen. Pretreatment of the macrophages with THC in the concentration range of 2.5 micrograms/ml (8 microM) to 5.0 micrograms/ml (16 microM) had little if any effect on the ability of the macrophages to either ingest or support the replication of Legionella. However, THC treatment of cells following Legionella infection resulted in increased numbers of bacteria recoverable from the macrophage cultures. Stimulation of the macrophage cultures with the activating agent lipopolysaccharide (LPS) was effective in reducing the ability of Legionella to grow in the cells. However, treatment of the LPS activated macrophages with THC resulted in greater growth of the Legionella in the cultures, indicating that the drug abolished the LPS induced enhanced resistance. These results demonstrate that THC treatment of macrophages following infection rather than before infection with Legionella promotes the replication of the bacteria within the macrophages. In addition, drug treatment suppresses the growth restricting potential of macrophages activated by LPS.  相似文献   

15.
The regulation by prostaglandin E2 (PGE2) of production of oxygen radicals by bacterial lipopolysaccharide-(LPS) activated macrophages was studied in vitro. A 48-hr incubation of murine thioglycollate-elicited macrophages with LPS (0.1 micrograms/ml) resulted in an enhanced ability of these cells to produce oxygen radicals when challenged with phorbol myristate acetate (PMA). Macrophages incubated for 48 hr without LPS did not produce measurable amounts of oxygen radicals when exposed to this triggering stimulus. Thus, PMA-triggered production of oxygen radicals was the result of macrophage activation by LPS. The PMA-triggered production of oxygen radicals by the LPS-activated macrophages was inhibited when PGE2 (10(-5) to 10(-9) M) was present during the incubation with LPS. Inhibition by PGE2 occurred during the early stages of macrophage activation, since the addition of PGE2 24 hr after LPS no longer inhibited the production of oxygen radicals by the macrophages. This inhibitory effect of PGE2 on the LPS-induced activation of macrophages could be reproduced by cyclic-adenosine-monophosphate (cAMP) agonists, such as isoproterenol and cholera toxin as well as by the cAMP analog dibutyryl-cAMP, suggesting a cAMP-mediated mechanism for the inhibitory effect of PGE2 on macrophage activation by LPS. Previous reports have implicated prostaglandins as mediators of destructive processes associated with chronic inflammation. Our findings suggest that PGE2 may, on the other hand, reduce tissue damage in a chronic inflammatory site by inhibiting the production of oxygen radicals by macrophages activated in the sera.  相似文献   

16.
Release of eicosanoids is an important response of macrophages to inflammation and bacterial infection. At low concentrations, bacterial lipopolysaccharide (1-2 micrograms/ml) fails to stimulate eicosanoid release in resident peritoneal macrophages but primes the macrophages for a greatly enhanced release of eicosanoids on stimulation with the calcium ionophore A23187 (0.1 microM) or with phorbol 12-myristate 13-acetate (50 nM), an activator of protein kinase C. Incubation of macrophages with Bordetella pertussis toxin, prior to priming with lipopolysaccharide, inhibited the release of both cyclooxygenase and lipoxygenase products upon A23187 stimulation. Pertussis toxin treatment of macrophages had no effect on eicosanoid release when the stimulus was phorbol 12-myristate 13-acetate. The presence of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an effective inhibitor of protein kinase C, during lipopolysaccharide priming and subsequent stimulation significantly inhibited eicosanoid release when phorbol 12-myristate 13-acetate was the stimulus, but did not affect eicosanoid release stimulated by A23187. Based on these results, at least two mechanisms, distinguished by apparent differences in sensitivity to pertussis-toxin-sensitive, guanine-nucleotide-binding proteins and protein kinase C, are involved in eicosanoid secretion by lipopolysaccharide-activated macrophages in response to A23187 and phorbol 12-myristate 13-acetate.  相似文献   

17.
Preincubation of human umbilical vein endothelial cell (EC) monolayers with 1 ng to 10 micrograms/ml lipopolysaccharide (LPS) increased the binding of T lymphocytes to EC. The effect was maximal at LPS concentrations of 0.1 to 10 micrograms/ml, and occurred with LPS derived from Escherichia coli (serotypes 0111:B4 and 0127:B8), Shigella flexneri (serotype 2a), Serratia marcescens (serotype 0:3), and Yersinia entercolitica (serotype 0:3). The increased binding appeared to be mediated primarily through an action on EC; preincubation of T cells rather than EC with LPS did not lead to enhanced binding. The onset of enhanced binding was very rapid, being observed after 2 to 3 min of preincubation and becoming maximal after 1 hr. EC were unresponsive to LPS after fixation with 2% paraformaldehyde-L-lysine-periodate and also when the LPS was incubated with EC at 4 degrees C. Enhanced binding was seen with lipid A and with LPS from Salmonella minnesota Re 595 (mainly lipid A) and was abolished by conjugation with polymyxin B. The observed increase in the binding of lymphocytes to EC exposed to LPS suggests that the lymphocytopenia induced by endotoxemia may result from augmentation of the adherence of lymphocytes to altered endothelium.  相似文献   

18.
Free fatty acid receptor G protein‐coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)‐stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana‐1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll‐like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen‐activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c‐Jun N‐terminal kinase inhibitor SP600125. LPS‐induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS‐induced inhibition of GPR120 expression is a reaction enhancing the LPS‐induced pro‐inflammatory response of macrophages.  相似文献   

19.
Diacylglycerol kinase (DGK) plays an important role in phosphoinositide signaling cascade by regulating the intracellular level of diacylglycerol and phosphatidic acid. The DGK family is involved in various pathophysiological responses that are mediated through unique binding partners in different tissues and cells. In this study, we identified a small GTPase effector protein, IQGAP1, as a novel DGKζ-associated complex protein. A bacterial endotoxin, lipopolysaccharide (LPS), facilitated the complex formation in macrophages. Both proteins co-localized at the edge and phagocytic cup of the cell. Furthermore, RNA interference-mediated knockdown of DGKζ or IQGAP1 impaired LPS-induced Rac1 activation. Primary macrophages derived from DGKζ(-/-) mice attenuated LPS-induced phagocytosis of bacteria. These results suggest that DGKζ is involved in IQGAP1/Rac1-mediated phagocytosis upon LPS stimulation in macrophages.  相似文献   

20.
Treatment of murine peritoneal macrophages with 100 nM prostaglandin E2 (PGE2) produced a rapid biphasic increase in intracellular cAMP that was maximal at 1 min and sustained through 20 min. Pretreatment of macrophages with 100 ng/ml of lipopolysaccharide (LPS) for 60 min prior to PGE2 decreased the magnitude of cAMP elevation by 50%, accelerated the decrease of cAMP to basal levels, and abolished the sustained phase of cAMP elevation. The effect of LPS was concentration-dependent, with maximal effect at 10 ng/ml in cells incubated in the presence of 5% fetal calf serum and at 1 microgram/ml in the absence of fetal calf serum. LPS also inhibited cAMP accumulation in cells treated with 100 microM forskolin, but the decrease was about half that seen in cells treated with PGE2. LPS concentrations that inhibited cAMP accumulation produced a 30% increase in soluble low Km cAMP phosphodiesterase activity while having no effect on particulate phosphodiesterase activity. The nonspecific phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, as well as the more specific inhibitors rolipram and Ro-20-1724 were effective in inhibiting soluble phosphodiesterase activity in vitro, producing synergistic elevation of cAMP in PGE2-treated cells, and blocking the ability of LPS to inhibit accumulation of cAMP. Separation of the phosphodiesterase isoforms in the soluble fraction by DEAE chromatography indicated that LPS activated a low Km cAMP phosphodiesterase. The enzyme(s) present in this peak could be activated 6-fold by cGMP and were potently inhibited by low micromolar concentrations of Ro-20-1724 and rolipram. Using both membranes from LPS-treated cells and membranes incubated with LPS, no decrease in adenylylcyclase activity could be attributed to LPS. Although effects of LPS on the rate of synthesis of cAMP cannot be excluded, the present evidence is most consistent with a role for phosphodiesterase activation in the inhibitory effects of LPS on cAMP accumulation in murine peritoneal macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号