首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between soil pH/calcium content and species richness of vascular plants in seven broadly defined Central European vegetation types, using Ellenberg indicator values for soil reaction and a phytosociological data set of 11,041 vegetation sample plots from the Czech Republic. The vegetation types included (A) broad-leaved deciduous forests, (B) meadows, (C) dry grasslands, (D) reed-bed and tall-sedge vegetation, (E) fens and transitional mires, (F) perennial synanthropic vegetation and (G) annual synanthropic vegetation. Relationships between local species richness (alpha diversity) and pH/calcium were positive for vegetation types A and C, negative for D and G, unimodal for E, and insignificant for B and F. Ellenberg soil reaction values explained 37% of variation in local species richness for vegetation type E, 24% for A, 13% for D, but only less than 4% for the others. Species pool size, i.e., the number of species that can potentially occur in a given habitat, was calculated for each plot using Beals index of sociological favourability applied to a large phytosociological database. For most vegetation types, the relationships between species pool size and pH/calcium were similar to the relationships between local species richness and pH/calcium, with the exception of meadows (weak unimodal) and perennial synanthropic vegetation (weak negative).These patterns suggest that for those types of Central European vegetation that developed independently of human influence in the Pleistocene or early Holocene (dry grasslands, deciduous forests), there are larger pools of calcicole than calcifuge species. This pattern is also found at the level of local species richness, where it is, however, less clearly pronounced, possibly due to the predominance of a few widespread and generalist calcifuges in acidic habitats. The unimodal pattern found in mires may result from similar underlying mechanisms, but in high pH environments mineral-rich spring waters probably decrease species richness by having toxic effects on plant growth. By contrast, vegetation types developed under direct human influence (meadows, synathropic vegetation) show weak negative or no relationships of local species richness or species pool to pH/calcium gradient. These results support the hypothesis ofPärtel (Ecology 83: 2361–2366, 2002) andEwald (Folia Geobot. 38: 357–366, 2003), that the modern calcicole/calcifuge disparity in the species pool of Central European flora has resulted from historical and evolutionary processes that took place on high pH soils. In the Pleistocene, calcareous soils dominated both the dry continental landscapes of Central Europe and glacial refugia of temperate flora, which were mostly situated in southern European mountain ranges with abundant limestone and dolomite. The negative pattern of species richness along the pH/calcium gradient found in reed-bed and tall-sedge vegetation, however, is not consistent with this historical explanation.  相似文献   

2.
Comparison of local species richness with the size of the species pool has the potential to distinguish between niche-limited and pool-limited community structure.Pärtel et al.,Oikos 75: 111–117, 1997, introduced a method intended to do this. However, their method is not ecologically or statistically valid. It gives highly significant results when analyzing random data. A positive result for their test does not necessarily have the meaning thatPärtel et al. believe it does, and the method tests the wrong statistical hypothesis (a significant result supports the ecological null hypothesis, it does not reject it). A more appropriate test would be to use regression of the richness/pool-size ratio on pool size. Richness/pool-size comparisons have been made across continents, habitats, sites and taxa, but it is argued that only comparisons between continents are valid, and these cannot be made because there are too few continents. Although easy to determine at the site level, on a regional scale the estimation of species pools involves too many arbitrary and subjective decisions. The species pool concept is stimulating, but it is probably operationally impossible to test. Like a wooden light bulb, it is beautiful and interesting, but of little use.  相似文献   

3.
Questions: Is it possible to render the species pool concept operational for cultural landscape management and restoration? Location: Hordaland and Sogn & Fjordane counties, western Norway. Methods: An initial regional species list, based on information on the distribution of species and habitats in the Norwegian flora, was filtered using information on target communities and species lists from 95 sites in the region. Owing to the importance of both mowing and grazing Ellenberg indicator values were not used in the identification process. Results: The final regional species pool consisted of 227 species, of which 194 were extracted from the flora, while 33 agricultural landscape species were added from the actual pool or from a list of species in additional hay meadows. Some of the 33 species were regular inhabitants of hay meadows, others were rare in the region. The regional species pool list includes information on each species on demands when hydrology, nutrients and base saturation in the soil is concerned, and whether or not they are characteristic for either of the boreal or boreo‐nemoral vegetation zones. Conclusions: Specialist knowledge was an advantage when adding cultural landscape species other than meadow species of the flora; 77 species were documented only by the flora, interesting from the point of view of restoration as this part of the pool would not have been found by just adding species lists. The diversity of the now isolated hay meadow sites in the region may be kept up by replacing the lost natural invasion by an artificial one, using local seed mixtures and transplants.  相似文献   

4.
A comparative study of relationships between stream acidity and bacteria, macroinvertebrates, and fish in the Adirondack Mountains of upper New York state and in the Southern Blue Ridge Mountains of eastern Tennessee, USA, was conducted. Although the study sites in both regions spanned a pH range from approximately 4.5 to 6.4, considerably greater seasonal variability in pH and higher monomeric Al concentrations characterized the Adirondack sites. Relationships between several biological characteristics and stream water acidity were similar in both regions, including lower production of epilithic bacteria and bacteria on decomposing leaves, lower leaf decomposition rates, lower density and generic richness of scraper/grazer macroinvertebrates, particularly Ephemeroptera, and lower fish abundance and survival in more acidic streams. Densities of total macroinvertebrates and densities of macroinvertebrates and bacteria inhabiting or closely associated with stream sediments were generally not related to stream water acidity.Regional differences occur in some of the relationships between biological characteristics and stream water acidity. Negative correlations between bacterial production on rocks and pH, between bacterial production on decomposing leaves and pH, and between densities of Ephemeroptera and scrapers and pH were stronger in the Adirondacks than in the Southern Blue Ridge. Higher Al concentrations in the Adirondacks may be responsible for the stronger relationships with pH there. The steeper slopes of the relationships between Ephemeroptera density and all forms of Al in the Adirondacks compared with the Southern Blue Ridge suggests that there may be some adaptation among a few acid/aluminum-tolerant species in the seasonally more constant acidic Southern Blue Ridge streams. Fish bioassays indicated longer survival times in acidic streams in the Adirondacks compared with the Southern Blue Ridge, but these results may be an artifact associated with the use in the Southern Blue Ridge of rainbow trout as the test species which is known to be more acid sensitive compared with brook trout, the test species used in the Adirondacks.  相似文献   

5.
The hump-shaped relationship between plant species richness and productivity is a well-established and important paradigm. While plot-based species richness patterns on local scales have received much attention, little is currently known about species-based patterns on a regional scale. Using Ellenberg's indicator values for 1802 plant species in central Europe, we assess the patterns in regional species richness with respect to light, water, and mineral nutrient availability – three variables that strongly influence productivity. The results of this analysis are compared to those of published studies on smaller scales leading to the following conclusions:
  • 1.

    On a regional scale in central Europe there is a hump-shaped relationship between soil nutrient supply and plant species richness within a given biome.

      相似文献   

6.
The type specimen ofGonioloboceras goniolobum (Meek), rediscovered by Spath in the British Museum, is the foundation for a more accurate comparative study of this and other species ofGonioloboceras.Gonioloboceras described asG. goniolobum byElias in 1938 is differentiated asGonioloboceras schmidti, new species. Suture sets (new term) for several growth stages inG. goniolobum (Meek),G. welleriSmith,G. schmidtiElias, G.eliasiMiller &Owen, andG. asiaticumLibrovitch are assembled and used for differentiation of the species.The Kazakhstan goniatite faunule containingG. asiaticum is considered of very late Pennsylvanian age.  相似文献   

7.
Aim In this paper, we adopted a large‐scale approach to evaluate the effect of regional richness of forest birds on the number of bird species retained by forest fragments in several localities across Europe. Location We studied bird assemblages in fourteen forest archipelagos embedded in agricultural matrices from southern Norway to central Spain. Tree composition varied from oak and beech forests of the northern localities to oak and pine xerophitic woodlands of the southern ones. The number of fragments in each forest archipelago ranged from eighteen to 211. Methods We used the Gleason equation (s = a + z log A; where s and A are, respectively, the species richness and size of forest fragments and z the rate of species loss) to estimate the species richness for 1‐ and 15‐ha fragments in each archipelago. The regional richness of forest birds was estimated by modelling the geographical distribution of species richness in the European atlas of breeding birds. Results The latitudinal distribution of regional richness displayed a convex form, with the highest values being in central Europe. Along this gradient, the number of species retained by fragments and the rate of species loss was positively related to regional richness. In addition, the percentage of the regional pool of species sampled by fragments decreased in the southern localities. Main conclusions Relationships between regional richness of forest birds and richness in fragments seem to explain why fragments in central Europe shelter more species than their southern counterparts. The decreased ability of southern forest fragments to sample the regional richness of forest birds, could be explained as an effect of the low abundance of many species in the Mediterranean, which could depress their ability to prevent extinction in fragments by a rescue effect. Alternatively, high beta diversity in the Mediterranean could produce undersampling by fragments of the regional pool of species. These regional differences in the response of bird assemblages to forest fragmentation are used to discuss the usefulness of large‐scale, biogeographical approaches in the design of conservation guidelines.  相似文献   

8.
We investigated the effects of several tree species on dehydrogenase and urease activities in soils derived from two different parent materials (glaciofluvial sand and loess) in forested areas in southern Poland. We hypothesized that coniferous forests (pine, spruce) alter the soil cation exchange capacity (CEC) and decrease soil pH and, therefore, might decrease soil enzyme activities compared with broadleaf species growing on similar soils. Eight paired plots (12 × 12 m) were established on glaciofluvial sand in pine (Pinus sylvestris) + oak (Quercus robur) and spruce (Picea abies) + pine stands, as well as on loess-derived soils: beech (Fagus sylvatica) + pine and hornbeam (Carpinus betulus) + pine stands. Each plot was a 4 × 4 m grid with 16 sampling points. In soil samples pH, soil texture, and organic carbon, nitrogen, base cation contents, dehydrogenase and urease activities were determined. On both parent materials, the soil pH was lower under coniferous species than under broadleaf species. The acidifying effect of tree species on sandy soil was in the order of spruce = pine > oak, while that on loess was pine > beech > hornbeam. Hornbeam and oak increased the soil pH and stimulated enzyme activity in the soil. The content of fine fraction enhanced potential enzyme activities in soils, thus the loess soils had greater dehydrogenase and urease activity. The results suggest that pine stores more soil organic C in association with silt increasing the pool of stabilized soil organic C.  相似文献   

9.
The demise of coppicing in UK ancient woodlands, combined with the planting of non-native, fast-growing conifers in the twentieth century, heightens the potential recharge value of ground flora seed banks. Soil cores from adjoining semi-natural and conifer-containing stands in four lowland ancient woods in central England were removed to establish seed bank species richness. During a fourteen-month germination trial soil from two depths yielded 6554 seedlings from 81 species, ten of which showed a strong affinity for ancient woodland conditions. Juncus effusus accounted for 80% of emergent seeds whilst 23 other species, including Lysimachia nummularia and Potentilla sterilis, were represented by only one individual. Species richness is described by a model that explains 40% of observed variance (P < 0.00001). The model has three significant variables: species richness increases as soil pH rises, and decreases with both depth and increasing time since the most recent planting/disturbance event. No difference was found in the density of seeds from species common to paired semi-natural and conifer-containing stands that were separated only by a woodland ride, suggesting prior management and environmental conditions have a greater influence on seed banks than current stand type. Sørensen similarity index values revealed poor congruence between above-ground vegetation and species in the seed bank. Taking pH measurements in conifer stands identified as younger in terms of planting/disturbance may help locate areas where greater numbers of species (including woodland specialists) are located. Caution is required, however, as these seed banks may also contain non-target, competitive species that may swamp the regeneration of woodland specialists.  相似文献   

10.
Zum Problem der sexuellen Fortpflanzung in der PeridineengattungCeratium   总被引:1,自引:0,他引:1  
On the basis of older literature and our new observations, a hypothesis is presented to illustrate our present view on the sexual cycle of the Ceratia. In the fresh-waterC. cornutum it has been possible to demonstrate that the “Knäuelstadium” ofBorgert (1910) represents in fact the postzygotene of meiosis. Formerly the “Knäuelstadium” was considered to be a stage of mitosis but, contrary to this view, occurs only in the Praeceratia, i. e. the swarmers emerging in spring from the germinating cysts (Scoczylas 1958). The “Knäuelstadium” has also been observed in marine Ceratia, but in cells of normal shape (Borgert 1910,Schneider 1924), which therefore function as meiocytes. The microswarmers (truncata-, lineata- andlata-forms;Lohmann 1908,Apstein 1910, 1911, and others) are the male gametes which copulate with females similar to vegetative cells, and which in this process are completely (flagellums?) resorbed by the latter. Stages of copulation have been observed in preserved material byApstein (1911),Borgert (1910),Tschirn (1920) and by us, and in the living state inC. horridum also by us. The latter species is monoecious. The marine Ceratia therefore seem to be haplonts in which the zygotes cannot be distinguished from vegetative cells, neither by a resting stage nor by obvious differences in shape. The possibility of diplophasic mitosis, however, has not been excluded.  相似文献   

11.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

12.
Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments and quantified the proportion of the pool that is present locally, i.e. the realized/potential (R/P) richness ratio. Because no consensus exists on how to estimate potential richness, we estimated it using three different approaches. Using these three estimates separately and in a combined ensemble estimate, we then analyzed the effects of potential drivers on R/P richness ratios. We predicted that the R/P richness ratio would 1) increase with decreasing distance from glacial refugia (accessibility), 2) and be generally low in geographically fragmented southern Europe because of dispersal limitation; 3) increase with actual evapotranspiration because greater availability of water and energy promotes local population persistence; and 4) increase with topographic heterogeneity because it promotes local species coexistence and facilitates long‐term species survival. There was considerable variation among the three R/P richness ratio estimates, but we found consistent support for a negative effect of regional geographic fragmentation and a positive topographic effect. We also identified fairly broad support for the predicted effect of accessibility. We conclude that local tree assemblages in Europe often fail to realize a large proportion of the potential richness held in the regional species pool, partially reflecting their geographical, historical, and environmental circumstances. The dispersal‐related effects of geographic fragmentation and accessibility exemplify regional controls that combine with local ecological sorting to determine local species richness.  相似文献   

13.
Aim Many high‐latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high‐pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness–pH–climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location Western Sayan Mountains, southern Siberia. Methods Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness–pH relationship is unimodal. In tundra vegetation, which occurs on low‐pH soils, richness increases with pH, but it decreases in steppes, which have high‐pH soils. In forests, where soils are more acidic than in the open landscape, the species richness–pH relationship is monotonic positive. Most species occur on soils with a pH of 6–7. Main conclusions Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness–pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness–pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils.  相似文献   

14.
Species distribution depends on the physiological and ecological niche where a species can exist and regenerate in resource competition with other species (niche limitation). The realized niche is influenced by local biotic processes that influence species behaviour and the shape of the response curves relative to environmental gradients. Processes on larger scales also influence the species niche through source-sink mechanisms (dispersal limitation) and the species richness of an area (pool limitation). Despite the growing evidence of skewed or irregular species response curves along gradients, many ecologists still assume symmetric, unimodal response curves along gradients in ecological interpretation. Ellenberg’s indicator system is probably the most common example. However, the assumption is not ecologically or statistically valid, due to the many different processes affecting the distribution of plant species. Here I present the results of Huisman-Olff-Fresco (HOF) regressions for 209 Danish forest species. HOF modelling is chosen to avoid the classical drawbacks of assuming symmetric, unimodal response patterns. I calculate the optima for all species with unimodal responses to soil pH and compare these with the Ellenberg indicator values for reaction (R), which are often used as a substitute for soil pH measurements. I demonstrate that the assumption of symmetric, unimodal species behaviour is violated in 54% of the cases and that pH optima and R indicator values for species are not always compatible. Ellenberg reaction scale has been used byEwald (Folia Geobot. 38: 357–366, 2003) as an indicator of which species are calcicole, i.e., whether they can grow and reproduce on calcareous soils. Such affinities of species, however, are related to both local niche properties and processes on large scales and cannot be generalized from a single empirical variable such as pH, nor from Ellenberg semi-ordinal indicator scale. I conclude that while the determination of whether species are calcicole or calcifuge requires more research, it is evident that Denmark contains a fairly balanced number of calciphytic and acidophytic species. This is probably due to the nearly equal areas with acidic and alkaline soils in Denmark, which also contribute to the high species richness of more than 500 vascular plant species in Danish forests.  相似文献   

15.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool.  相似文献   

16.
Aim The objectives were to (1) analyse the combined effects of soil pH, Ca content and soil moisture on total density and species richness of land snails in forest ecosystems, (2) explore relationships between the quantitative composition of snail assemblages and habitat characteristics, (3) investigate the relationships between soil pH and density of some of the most frequent species, and (4) compare the data with those from studies conducted in other temperate‐humid regions of Europe. Location Study sites were selected from 15 landscape types including different lithologies within the area of Baden‐Württemberg (35,000 km2), SW Germany. Methods Snails were recorded quantitatively from 83 study sites, with four plots representing a total of 0.25 m2 per site. Topsoil samples from each site were analysed for pH, exchangeable Ca, and Ca content of carbonates. Three categories of soil moisture (dry, intermediate and wet) were established and defined according to the (climatic) water balance. Numbers of individuals and species were brought in relation to soil moisture and soil pH. Cluster analyses were conducted to identify groups of quantitatively similar snail species assemblages. Results Topsoil pH (2.7–7.5) and soil Ca contents were closely correlated. On dry soils, total snail density and species richness are generally low and do not change with pH, but clearly increase with increasing pH on intermediate moisture soils and on wet soils. On the latter, numbers of individuals and species are generally much higher compared with intermediate moisture sites at the same value of soil pH. Changes of density in relation to soil pH vary between species. Depending on the species, density increases only in the lower or only in the higher range of pH, is not related to pH, or decreases with increasing pH. Furthermore, these patterns vary within the same species depending on the region. This became evident from comparisons with other studies, particularly between sites in SW Germany and southern Scandinavia. From cluster analyses, subgroups of snail assemblages of high quantitative similarity were identified. Group formation is explained by soil pH to some extent, and one subgroup showed a connection with coniferous woodland sites on acidic soils. No further environmental factors available from our data could explain the clustering of snail assemblages more detailed. Main conclusions Soil moisture is the strongest determinant of snail density and species richness at undisturbed woodland sites, but effects of soil moisture and soil pH on these patterns are closely interrelated on intermediate moisture soils and wet soils. However, the quantitative species composition of the land snail assemblages is related to soil properties to a lower degree than snail density and species richness, and other habitat characteristics such as vegetation or litter quality, can be important for species dominance in addition.  相似文献   

17.

Aims

Reclamation following oil sands mining in northeastern Alberta (Canada) creates adverse reforestation soil conditions, including extreme pH values. We elucidated pH tolerance limits of boreal plant species and how pH affects nutrient uptake in these plants.

Methods

We measured growth, gas exchange, and foliar nutrient concentration of 15 common northern boreal forest plants after eight weeks exposure to root zone pH ranging from 5.0 to 9.0. Cluster analyses were used to group these species based on their pH responses.

Results

Based on their growth and gas exchange responses to pH, the 15 plant species could be divided into five groups, each of which contained species that commonly co-occur in particular boreal forest site types. For the foliar nutrient responses to pH, the 15 species could be grouped into only two categories; both showed decreases in foliar N, P, Fe and Zn concentration with increasing pH, with a more pronounced effect on the group that included trembling aspen, paper birch and chokecherry.

Conclusions

The evidence of differential adaptation to pH by habitat type suggests the importance of soil pH as a factor affecting boreal plant species distribution and could be helpful for selection of species suitable for reclamation of sites with altered soil pH.
  相似文献   

18.
The region of Iran, Iraq, Afghanistan and the neighbouring countries is important for some groups of the speciesLotus L., especially those of the circle ofL. corniculatus L. andL. gebelia Vent. The first group is represented by the speciesL. corniculatus L. with 4 subspecies (3 of which are important for this region), andL. tenuis Waldst. etKit. which here attains the eastern boundary of the continuous area of distribution, and by the eastern speciesL. krylovii Schischk. etSerg. andL. rechingeri Chrtková-?ertová. The second group is represented by the speciesL. gebelia Vent.,L. michauxianus Ser. in DC. andL. libanoticus Boiss. their areas of distribution covering mostly those regions. Most of the species show considerable variability within the species.  相似文献   

19.
Spatial and temporal patterns of species richness in a riparian landscape   总被引:6,自引:0,他引:6  
Aim To test for control of vascular plant species richness in the riparian corridor by exploring three contrasting (although not mutually exclusive) hypotheses: (1) longitudinal patterns in riparian plant species richness are governed by local, river‐related processes independent of the regional species richness, (2) riparian plant species richness is controlled by dispersal along the river (longitudinal control), and (3) the variation in riparian plant species richness mirrors variation in regional richness (lateral control). Location The riparian zones of the free‐flowing Vindel River and its surrounding river valley, northern Sweden. Methods We used data from three surveys, undertaken at 10‐year intervals, of riparian reaches (200‐m stretches of riverbank) spanning the entire river. In addition, we surveyed species richness of vascular plants in the uplands adjacent to the river in 3.75‐km2 large plots along the same regional gradient. We explored the relationship between riparian and upland flora, and various environmental variables. We also evaluated temporal variation in downstream patterns of the riparian flora. Results Our results suggest that local species richness in boreal rivers is mainly a result of local, river‐related processes and dispersal along the corridor. The strongest correlation between species richness and the environment was a negative one between species number and soil pH, but pH varied within a narrow range. We did not find evidence for a correlation between species richness on regional and local scales. We found that the local patterns of species richness for naturally occurring vascular plants were temporally variable, probably in response to large‐scale disturbance caused by extreme floods. Most previous studies have found a unimodal pattern of species richness with peaks in the middle reaches of a river. In contrast, on two of three occasions corresponding to major flooding events, we found that the distribution of species richness of naturally occurring vascular plants resembled that of regional diversity: a monotonic decrease from headwater to coast. We also found high floristic similarity between the riparian corridor and the surrounding landscape. Main conclusions These results suggest that local processes control patterns of riparian species richness, but that species composition is also highly dependent on the regional species pool. We argue that inter‐annual variation in flood disturbance is probably the most important factor producing temporal variability of longitudinal species richness patterns.  相似文献   

20.
A pollen record obtained from a 2.2-m sediment succession deposited in a small lake in the province of Västerbotten, north-eastern Sweden, reveals the presence of continuous forest cover since 8,500 calendar years before present (cal b.p.). Forest with abundant Pinus (pine) and Betula (birch) initially colonized the area, followed by a dominance of deciduous trees, primarily Betula, from ca. 8,000 to ca. 3,200 cal b.p. Pollen accumulation rates of Quercus (oak), Ulmus (elm) and Tilia (linden) suggest the possible local presence of these thermophilous tree species during this period. The climate gradually became colder and moister around 3,500 cal b.p. and an increased abundance of Sphagnum spores indicates paludification. Picea (spruce) became established around 3,200 cal b.p. and less than 500 years later this was the dominant tree species around the lake. The fire frequency as inferred from charcoal particles exhibits a general increase from ca. 3,000 cal b.p. with subsequent charcoal accumulation maxima at around 2,800 cal b.p., 1,700 cal b.p. and in recent time. The human influence on vegetation was significant during the last 200–300 years. Soil erosion increased substantially and fern spores amount to ca. 55% of the total pollen assemblage in the uppermost samples. These results suggest an extensive anthropogenic impact on the local forest ecosystem, with abundant logging, burning and ditching in the vicinity of the lake. Independent evidence of sub-recent human-induced environmental change is provided by historical accounts. Complementary information on catchment soil development and aquatic nutrient status was provided by records of magnetic susceptibility and elemental carbon, and nitrogen contents obtained from the same sediment core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号