首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trap of Aldrovanda vesiculosa, an aquatic insectivorousplant, consists of a pair of lobes (trap-lobes) which bordereach other at the midrib. The central portion of the lobe iscomposed of three cell layers, an inner and outer epidermisenclosing a single middle layer of relatively large cells, whereasthe marginal portion consists only of the two epidermal celllayers. Intracellular potentials of these cells were measuredby the microelectrode technique. All the cells of the lobeswere excitable and had identical membrane potentials at rest( –110 mV) and during action (amplitude, 130 mV). Theaction potential of each cell was elicited by bending a sensoryhair, one of many standing on the inner surface of the centralportion, or by injecting an outward current into another cellin the lobe. Action potentials were propagated throughout thetrap-lobes at a rate of about 8 cm/sec. The maximum rising ratewas 2.7 V/sec and the duration of the action potential was 1sec. (Received August 8, 1981; Accepted October 15, 1981)  相似文献   

2.
Membrane Potentials in Excitable Cells of Aldrovanda vesiculosa Trap-Lobes   总被引:1,自引:0,他引:1  
The resting membrane potential in excitable cells of Aldrovandatrap-lobes is composed of diffusion and electrogenic potentials.The diffusion potential, about –100 mV in artificial pondwater, was determined from the external K+ and Na+ concentrations.The permeability ratio, PNa/PK of the membrane was estimatedto be about 0.3. The electrogenic potential hyperpolarized themembrane to about –140 mV. The peak value of the actionpotential increased by +26 mV with a tenfold increase in theexternal Ca2+ concentration. The action potential was blockedby an application of the Ca2+ chelater or the Ca channel blocker,LaCl3. Cells showed additional Ca2+ influx (7.8 pmole/cm2 impulse)during membrane excitation. These facts suggest that the transientincrease in Ca2+ influx causes the action potential presentin cells of Aldrovanda trap-lobes. 1 Present address: Jerry Lewis Neuromuscular Research Center,School of Medicine, University of California Los Angeles, LosAngeles, CA90024, U.S.A. 2 Present address: Biological Laboratory, Kyoritsu Women's University,Hachioji 193, Japan. (Received September 21, 1983; Accepted September 7, 1984)  相似文献   

3.
In the trap-lobes of Aldrovanda vesiculosa, an action potentialwas generated in a cell located at the base of a sensory hairstanding on the margin of central portion of the paired lobes,which spread over this portion within about 40 msec. The electricalcoupling ratio for two adjacent cells in the middle layer ofthe lobes was 0.8. This showed that an action potential generatedin a cell of the trap-lobes must spread electrotonically toadjacent cells. An analysis of an equivalent circuit for thecell injected with current and its neighboring cells in themiddle layer of the lobes showed that the resistances of theplasmalemma, tonoplast and junction between two cells were 11.1,4.7 and 0.56 M, respectively. Numerous plasmodesmata in thejunctional walls of the cells were found by electron microscopy.The low resistance of the junction between cells must be dueto the presence of the plasmodesmata which allows an electrotonictransmission of action potential from cell to cell. (Received January 23, 1982; Accepted April 13, 1982)  相似文献   

4.
K+ movements during the shutting and subsequent opening of trap-lobesin Aldrovanda vesiculosa were measured using 86Rb as a tracerfor K+. Immediately after the shutting, a large amount of 86Rbpre-loaded in the trap-lobes was detected in the hollow spaceinside the shut trap. This may indicate that much of the K+in the active motor cells leaks out during the shutting, resultingin turgor loss in the cells. 86Rb(K+) uptake in the trap wasactive. During the opening process, enhanced 86Rb uptake wasobserved. The time course of this uptake was similar to thatof the opening of the trap-lobes, and both courses were acceleratedby IAA. Enhanced K+ uptake may restore the turgor in activemotor cells. The quantity of K+ that moved during the shuttingor opening was estimated as 20% of that in the active motorcells in the open state of the trap-lobes. The K+ efflux acrossthe membranes of the active motor cells may be caused by a largeincrease in bulk flow triggered by an action potential, andwas estimated as 6,200 pmol.cm–2. 1 This paper is dedicated to the memory of Professor Joji Ashidawho established the physiology of rapid movement in Aldrovandavesiculosa. (Received July 22, 1982; Accepted November 11, 1982)  相似文献   

5.
Despite the unprecedented global decline in extant populations of Aldrovanda vesiculosa in the last century, little is known about the reproductive biology of this iconic aquatic carnivorous plant. This study aimed to investigate the role of seed‐based reproduction in the ecology of A. vesiculosa, with particular focus on the interplay between the regulation of seed dormancy by temperature cues and the efficacy of exogenous ethylene gas to act as a germination stimulant, the desiccation capacity and long‐term storage potential of seeds for conservation purposes. Sexual reproduction appears to be extremely limited in both natural and naturalized populations across three continents, with high variability in the success of flowering and seed set between sites and between seasons. Overall, flowering yielded few fertile fruit (6–19% of flowers producing fertile fruit) and seed viability was variable but generally low (29–88%). Fecundity appears to be influenced by seasonal climatic conditions and microhabitat characteristics. Aldrovanda vesiculosa possesses physiologically dormant seeds, with germination stimulated by exposure to ethylene gas (>90% germination) at 25 °C. Seeds appear sensitive to desiccation and sub‐zero temperature storage, with no germination and markedly reduced embryo growth after storage of seeds for >1 month at 15 °C and 15% relative humidity or after short‐term (24 h) storage at ?18 °C. In the absence of significant conservation and restoration initiatives, the continuing decline of dystrophic freshwater wetland habitats globally leaves A. vesiculosa facing extinction. As the successful long‐term storage of seeds appears unfeasible based on the approaches described in this study, other alternatives for germplasm conservation such as cryostorage of vegetative tissues or zygotic embryos must be considered for establishing long‐term ex situ collections of critical germplasm.  相似文献   

6.
Basic growth characteristics of two species of free-floating submerged carnivorous plants, the very rare and stenotopicAldrovanda vesiculosa and the very common and eurytopicUtricularia australis, were investigated in a 10/11-day field growth experiment within three nylon enclosures at two artificialAldrovanda sites in the T?eboň region, S Bohemia, Czech Republic, at the peak of a growing season. Growth ofAldrovanda was best at a meso-eutrophic site (biomass doubling time,T 2, 8.4–10.7 days, mean growth of new leaf whorls 0.96 whorls days?1, 1.6 developed branches per shoot) and slower at an oligo-mesotrophic site (T 2 17.2–21.5 days, growth of whorls 1.01 whorls days?1, 0.1–0.5 branches per shoot). Growth ofUtricularia was similar at both sites (T 2 19.8–33.2 days or 9.1–16.8 days, growth of whorls 3.1 or 2.7 whorls days?1, 1.5–2.1 or 0.8–1.4 developed branches per shoot at the former or latter site, respectively). Throughout the experiment, both species at the meso-eutrophic site allocated relatively more biomass to the production and growth of branches, than to that of new whorls. The results show thatAldrovanda, although usually considered as competitively weaker, can grow faster during the growing season peak thanUtricularia due to frequent branching and the subsequent rapid growth and separation of daughter shoots. Very rapid growth of rootless aquatic carnivorous plants in nutrient-poor habitats allows the consideration of ecophysiological adaptations that enable the plants to gain limiting mineral nutrients. These adaptations include carnivory, efficient nutrient reutilization from senescent shoots, and very high affinity for mineral nutrient uptake from water. Comparison of growth rates of rare and stenotopicA. vesiculosa and very common and eurytopicU. australis shows that differences in their rarity do not seem to be based on differences of growth rate.  相似文献   

7.
8.
Various ecophysiological investigations are presented in Aldrovanda vesiculosa, a rootless aquatic carnivorous plant. A distinct polarity of N, P, and Ca tissue content per dry mass (DM) unit was found along Aldrovanda shoots. Due to effective re-utilization, relatively small proportions of N (10 – 13 %) and P (33 – 43 %) are probably lost with senescent leaf whorls, while there is complete loss of all Ca, K, and Mg. The total content of starch and free sugars was 26 – 47 % DM along adult shoots, with the maximum in the 7th – 10th whorls. About 30 % of the total maximum sugar content was probably lost with dead whorls. The plant was found to take up 5 – 7 times more NH4 + to NO3 from a mineral medium. Under nearly-natural conditions in an outdoor cultivation container, catching of prey led to significantly more rapid growth than in unfed plants. DM of the fed controls was 48 % higher than in the unfed plants. The controls produced 0.69 branches per plant, while the unfed plants did not produced any. However, the N and P content per DM unit increased by 6 – 25 % in the apices and the first 6 whorls in the unfed variant, as compared to the fed controls. It may be suggested that carnivory is very important for Aldrovanda.  相似文献   

9.
Protoplasma - Aldrovanda vesiculosa (Droseraceae) is a rare aquatic carnivorous plant, distributed in Europe, Asia, Africa, and Australia. Aldrovanda populations can flower prolifically under...  相似文献   

10.
Among trapping mechanisms in carnivorous plants, those termed ‘active’ have especially fascinated scientists since Charles Darwin’s early works because trap movements are involved. Fast snap-trapping and suction of prey are two of the most spectacular examples for how these plants actively catch animals, mainly arthropods, for a substantial nutrient supply. We show that Drosera glanduligera, a sundew from southern Australia, features a sophisticated catapult mechanism: Prey animals walking near the edge of the sundew trigger a touch-sensitive snap-tentacle, which swiftly catapults them onto adjacent sticky glue-tentacles; the insects are then slowly drawn within the concave trap leaf by sticky tentacles. This is the first detailed documentation and analysis of such catapult-flypaper traps in action and highlights a unique and surprisingly complex mechanical adaptation to carnivory.  相似文献   

11.
本文介绍植物季节性休眠尤其是冬季休眠的诱导、建立、维持、解除以及重建的分子机制研究进展。  相似文献   

12.
Trap fluid of aquatic carnivorous plants of the genus Utricularia hosts specific microbiomes consisting of commensal pro‐ and eukaryotes of largely unknown ecology. We examined the characteristics and dynamics of bacteria and the three dominant eukaryotes, i.e. the algae‐bearing ciliate Tetrahymena utriculariae (Ciliophora), a green flagellate Euglena agilis (Euglenophyta), and the alga Scenedesmus alternans (Chlorophyta), associated with the traps of Utricularia reflexa. Our study focused on ecological traits and life strategies of the highly abundant ciliate whose biomass by far exceeds that of other eukaryotes and bacteria independent of the trap age. The ciliate was the only bacterivore in the traps, driving rapid turnover of bacterial standing stock. However, given the large size of the ciliate and the cell‐specific uptake rates of bacteria we estimated that bacterivory alone would likely be insufficient to support its apparent rapid growth in traps. We suggest that mixotrophy based on algal symbionts contributes significantly to the diet and survival strategy of the ciliate in the extreme (anaerobic, low pH) trap‐fluid environment. We propose a revised concept of major microbial interactions in the trap fluid where ciliate bacterivory plays a central role in regeneration of nutrients bound in rapidly growing bacterial biomass.  相似文献   

13.
14.
Glands of the carnivorous pitcher plant Nepenthesalata are activein transport of materials into and out of the pitcher lumen,indicating dual functions in both secretion and absorption.This study examined the potential for open transport throughthese glands using the ultrastructural tracer lanthanum, whichis restricted to the apoplast, and the fluorescent symplastictracer, 6(5)carboxyfluorescein. Glandular uptake of lanthanumfrom the pitcher fluid occurred through the outer cell wallbetween irregularly spaced cutinized deposits, but was blockedfrom entering the underlying mesophyll cell walls by thick endodermal-likeregions. Similarly, lanthanum localization showed an open apoplasticpathway from the petiole to the endodermal regions in the glandbase. Thus, transport of materials into or out of the glandmust occur through the symplast. 6(5)Carboxyfluorescein showedthat these glands transport fluids directly from the pitcherfluid into vascular endings immediately beneath them via a symplasticroute. When applied to the petiolar vascular system, the fluorescenttracer freely entered immature pitchers, but was blocked fromentering the lumen of the mature pitcher by an endodermal zone.An ultrastructural survey showed infrequent pits with plasmodesmatalconnections to adjoining subepidermal cells. These results indicatethat the function of the gland is developmentally regulated.Prior to maturity, the primary function of the gland appearsto be secretion. However, at maturity, secretion is blockedby an endodermal layer, which limits the function of the glandto absorption. These studies support the theory that the glandsof Nepenthesalata are specialized for the bi-directional transportof materials.Copyright 1999 Annals of Botany Company Apoplastic transport, 6(5)carboxyfluorescein, carnivorous plants, digestive glands, endodermal layer,Nepenthesalata Blanco, lanthanum, pitcher plants.  相似文献   

15.
植物氮素营养的生理生态学研究   总被引:73,自引:0,他引:73  
赵平  彭少麟 《生态科学》1998,17(2):37-42
讨论了植物的氮(N)素营养过程与C的消耗关系、光合作用与N投入的关系、水分平衡与植物的N素营养的关系.  相似文献   

16.
We collected ~29 kb of sequence data using Roche 454 pyrosequencing in order to estimate the timing and pattern of diversification in the carnivorous pitcher plant Sarracenia alata. Utilizing modified protocols for reduced representation library construction, we generated sequence data from 86 individuals across 10 populations from throughout the range of the species. We identified 76 high-quality and high-coverage loci (containing over 500 SNPs) using the bioinformatics pipeline PRGmatic. Results from a Bayesian clustering analysis indicate that populations are highly structured, and are similar in pattern to the topology of a population tree estimated using *BEAST. The pattern of diversification within Sarracenia alata implies that riverine barriers are the primary factor promoting population diversification, with divergence across the Mississippi River occurring more than 60,000 generations before present. Further, significant patterns of niche divergence and the identification of several outlier loci suggest that selection may contribute to population divergence. Our results demonstrate the feasibility of using next-generation sequencing to investigate intraspecific genetic variation in nonmodel species.  相似文献   

17.
18.
19.
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey''s body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.  相似文献   

20.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores.Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands.In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号