首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Apiaceae family includes vegetables, as well as herb and spice crops. Compared to major crops, there have been few breeding or genetic improvement programs for any of the Apiaceae, especially the herb and spice species. Haploidy technology can be used to develop uniform, true-breeding lines, as well as to accelerate breeding programs. Field trials of dill (Anethum graveolens L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.) doubled haploid (DH) lines were conducted over 2–5 cropping seasons. Several of the DH dill lines had desirable agronomic characteristics such as short uniform stature along with early maturity that would be useful for crop improvement. Seed yields and the essential oil content of the seed harvested from the best performing DH dill lines were either equal to or higher than the parental line. A DH annual caraway line was identified that produced higher seed yields than the industry standard. The main constituents of the essential oil for the DH lines of both dill and caraway were similar to the parental lines. Fennel DH lines exhibited differences in height but were too late in maturity for seed production under prairie conditions. The results indicate that not only were we able to generate DH lines that could be used in a crop improvement program, but we developed DH lines that could be used directly as cultivars as these lines performed better than the industry standard (parental line).  相似文献   

2.
Tagetes minuta L., generally known as wild marigold and locally as “Kakiebos”, has been used traditionally for medicinal purposes in many countries around the world. South Africa is currently the major producer of Tagetes essential oil which is used in perfumery, cosmetics and aromatherapy. The organoleptic and therapeutic properties of an essential oil are dependent upon the chemical profile of the oil. Tagetes essential oil from India, Egypt and the United Kingdom has been reported to be highly variable. In this study, possible chemotypic variation of South African Tagetes oil was explored. Eighty-three individual plants were collected from twenty-one different localities in South Africa. Essential oils were obtained by hydrodistillation using a Clevenger-type apparatus and the oil yield obtained ranged between 0.38 and 1.52%. The essential oils were analysed by gas chromatography coupled to mass spectrometry with flame ionisation detector (GC–MS‒FID) and the major compounds accounting for >85% of the total composition were identified as: (Z)-β-ocimene (27.9–56.0%), (E)-ocimenone (7.4–37.2%), (Z)-tagetone (1.4–24.9%), dihydrotagetone (n.d.−23.4%), (Z)-ocimenone (4.5–13.9%), limonene (n.d.−6.5%) and (E)-tagetone (n.d.−3.2%). Untargeted analysis of GC–MS data using MarkerLynx® and hierarchical clustering analysis (HCA) revealed two major chemotypes. Further analysis of the two chemotypes using orthogonal projections to latent structures-discriminant analysis (OPLS-DA) identified (E)-tagetone, dihydrotagetone and (Z)-tagetone as characteristic marker constituents for chemotype 1, while chemotype 2 was characterised by (Z)-β-ocimene, (E)-ocimenone and (Z)-ocimenone.  相似文献   

3.
Nakagawa (Am J Primatol 41:267–288, 1997) reported that both the gross energy and gross protein intakes of an adult female Japanese macaque (Macaca fuscata) on Kinkazan Island, northern Japan, were high in spring (March–May) and fall (September–November) and low in summer (June–August) and winter (December–February), and that these values reflected the seasonal differences in nutritional conditions (defined as whether the intakes of energy and protein satisfy the requirements). We estimated the energy balance (energy intake minus its expenditure) and the protein balance (protein intake minus its requirement) of the monkeys on Kinkazan Island every month over the course of 1 year (2004–2005) in order to verify Nakagawa’s conclusions. Like Nakagawa, we found that the energy balance of the monkeys in the fall was higher than in the summer and winter, whereas the protein balance in the fall was higher than in the winter. However, we did not find that spring energy and protein values were greater than summer and winter values. We also did not find that summer protein values were low. Both the energy balance and the protein balance changed rapidly within the same season. The energy intakes and the energy balances were higher in mid-spring and mid- and late fall and lower in late spring and early summer, whereas the protein intakes and the protein balances were higher in mid-spring and mid-summer and lower in early and mid-winter. Since Japanese macaques respond to seasonal changes in food supply by changing their foods, continuous data collection with short intervals is recommended in order to accurately document the energy and protein balances of the monkeys.  相似文献   

4.
 Absorption of light and radiation use efficiency (RUE) were measured in a dense stand of the seagrass Amphibolis griffithii in Warnbro Sound, a temperate marine embayment in southern Western Australia. Total light intercepted by the canopy was measured and compared with dry weight leaf production, under both summer and winter conditions. RUE was found to be higher in winter (1.56 g MJ–1) than summer (1.01 g MJ–1). These values are very similar to values measured for annual crop plants and emphasise the value of applying theory developed for terrestrial crop plants to seagrasses. Canopy extinction coefficients were 0.93 m–1 in winter and 0.44 m–1 in summer. There were large differences in hours above saturating irradiance (H sat) between the top (Hsat = 5 h 14 min) and base (18 min) of the canopy in winter. Energy flows in A. griffithii suggest that this species is highly susceptible to short-term perturbations in incident irradience during the winter period as the energy stored within the rhizomes is small relative to daily respiratory demands. Received: 5 October 1995 / Accepted: 14 August 1996  相似文献   

5.
We studied carotenoid composition and chlorophyll fluorescence in two-year-old needles from Siberian spruce (Picea obovata (L.) Karst.), Siberian fir (Abies sibirica L.), and common juniper (Juniperus communis L.). The highest values of maximum PSII photochemical activity (F v/F m) equaling 0.82–0.85 were observed in July–September. The decrease in F v/F m in December–March was more pronounced in juniper (down to 0.15) than in spruce and fir (0.45–0.50). In May, we observed a nearly complete recovery in maximum PSII photochemical activity in fir and spruce (0.72–0.77), while in juniper, the F v/F m value was notably lower (0.65–0.67). The amount of thermal dissipation of energy absorbed by PSII LHC did not exceed 30% in summer and equaled 60–90% in winter and early spring. The carotenoid pool consisted mainly of xanthophylls, among which lutein (70%), neoxanthin (7–10%), and a violaxanthin cycle (VXC) component — violaxanthin (3–15%) were constantly present. The accumulation of two other VXC pigments—zeaxanthin and antheraxanthin, was noted in December–March. In July, these xanthophylls were not identified. We discovered a direct connection between VXC pigment de-epoxidation level and light energy thermal dissipation in boreal conifer leaves. Such association reflects the non-species-specific character of the mechanism for quenching zeaxanthin-dependent nonphotochemical chlorophyll fluorescence in PSII LHC in winter and spring.  相似文献   

6.
Gas chromatography-flame ionisation detection (GC-FID) and gas chromatography–mass spectrometry (GC–MS) analyses of the essential oils of leaves and fruits of the ornamental Shinus molle L. were reported and their allelopathic effect on wheat (Triticum aestivum L.) was evaluated. Qualitative and quantitative differences between fruit and leaf oils were observed. Both oils were rich in monoterpene hydrocarbons and the major constituents were limonene and β-phellendrene (35.9–65.4%), α-phellendrene (24.3–20.1%), myrcene (12.8–7.7%) and α-pinene (5.9–1.7%) for fruits and leaves, respectively. Both essential oils showed a dose-dependent allelopathic activity on wheat germination and radicle elongation with leaf oil being the more phytotoxic.  相似文献   

7.
Following an apparent increase of local population density of coypu (Myocastor coypus) in a Mediterranean remnant wetland, we developed a pilot study aimed to evaluate a specific control program. Inside the study area, we performed three transects per month from August 2008 to July 2009, grouping data in bimonthly periods. The water level in the study area showed a maximum in December–January, significantly decreasing from late spring to summer and significantly increasing from late summer to winter. Sampled individuals mainly occurred in Phragmites reed beds and in rush beds (dominance of Carex sp., Juncus sp. Bolboschoenus sp.). The index of mean relative density of coypu individuals ranged between 1.40 (February–March) and 5.72 (October–November) with an evident increase in late summer–autumn. During this period, mean density of runways was higher in reed beds than in rush beds, with differences tending to significance. In summer, the network of channels in reed beds, locally used for fishery farm, may maintain a water level suitable for the coypu. These results (preference for reed beds and increase of coypu density in late summer–autumn) should be considered when coypu populations are under control program, at least in the Mediterranean region where there is a scarcity of available data.  相似文献   

8.
为提高植物修复的经济价值,该文选取孔雀草、波斯菊和矢车菊三种附加值较高的花卉植物,考察其对广西某矿区Cd、As、Pb复合污染农田的修复潜力,测定分析三种花卉植物对重金属的富集和转运能力,并从修复后植物的地上部提取精油,研究植物精油对病原菌埃希氏大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphyloccocus aureus)、伤寒沙门氏菌(Salmonella typhimurium)的生长抑制效果,进一步探索植物精油作为洗手液添加剂的应用能力。结果表明:(1)试验区域内土壤污染严重,Cd、As全量超过风险管制值,Pb全量超过风险筛选值,属于Cd、As、Pb重度污染。(2)选取的三种花卉植物均可在试验区域较好地生长,其中孔雀草和波斯菊对Cd、Pb的富集与转运能力较强,对As的富集能力最弱但转运能力较强。与孔雀草和波斯菊相比,矢车菊除对Cd的转运能力较强外,对其他重金属的富集和转运能力均较弱。三种植物重金属富集能力大小排序为孔雀草>波斯菊>矢车菊,不同花卉对重金属富集偏好顺序依次为Cd>Pb>As。(3)从修复后的植物地上部提取精油进行研究分析发现,孔雀草精油对三种病原菌都具有良好的生长抑制效果(<10 CFU·mL-1),且孔雀草体内富集的重金属并未影响精油中的重金属含量。另外,添加了孔雀草精油的洗手液,对金黄色葡萄球菌的生长抑制效果可延长至480 min。因此,孔雀草不仅可作为重金属复合污染农田的修复植物,而且修复后还可从植物体内提取精油作为抑菌剂。该研究结果为修复后重金属富集生物质的新型资源化利用提供了理论基础。  相似文献   

9.

We used gas chromatography-mass spectrometry (GC-MS) to analyze total yields and relative composition of the volatile compounds from leaf extracts ofElshoizia cilliata. This species contains 22 compounds. The major constituents of its essential oils are dihydrotagetone (62.7%), ß-caryophellene (4.96%), germacrene-d (4.03%), and ±-humulene (1.34%). Compounds in these leaf extracts are remarkably high in dihydrotagetones (40.5 to 81.6%). The total amount of monoterpenoids is 3.17 to 7.03 times greater than that of sesquiterpenoids, and is highly correlated with the level of dihydrotagetone (r = 0.97). Seasonal variations are significantly different only for dihydrotagetone (p < 0.0005), but not for the yields of other volatile compounds.

  相似文献   

10.
Seasonal energy allocation and deficits of marine juvenile fishes have considerable effects on their survival. To explore the winter survival mechanism of marine fishes with low lipid reserves in their early life, juvenile walleye pollock Theragra chalcogramma were collected along the continental shelf of northern Japan over a 2-year period, and energy allocation and deficit patterns were compared between wild and laboratory-starved fish. Contrary to expectations, wild fish generally continued to accumulate protein mass and concurrently tended to reduce lipid mass from late autumn through winter. The most plausible explanation for the continuous structural growth is that juvenile pollock give priority to reducing mortality risk from size-selective predators under quasi-prey-limited conditions. Exceptionally, inshore small fish reduced both constituents during a winter. The inshore fish consumed 2.5 times more lipid energy than protein energy in November–December, but protein was more important than lipids as a source of energy in December–January and in February–March. However, dependence upon protein reserves was lower for the wild fish than for the laboratory-starved fish, suggesting milder nutritional stress of the wild fish than that observed in the starvation experiment. Moreover, the lipid contents of mortalities in the starvation experiment were mostly <1%, whereas few wild fish had such lipid contents in the field. These results suggest that juvenile pollock are able to avoid both starvation and predation by accumulating protein reserves.  相似文献   

11.
The essential oil obtained by hydrodistillation from the leaves of micropropagated plants of Artemisia amygdalina was analyzed by capillary GC–FID and GC–MS and compared with that obtained from the leaves of field growing parent plants. The oil yield from the micropropagated plants was lower (0.05% v/w) than the oil yield obtained from field-grown plants (0.2% v/w). The major constituents of the field-grown plants were p-cymene (21.0%), 1,8-cineole (24.9%), α-terpineol (5.9%), β-caryophyllene (4.7%), germacrene D (4.0%), while as the major constituents from the micropropagated plants were p-cymene (11.3%),1,8-cineole (10.2%), borneol (7.9%), α-longipinene (5.5%), α-copaene (5.5%) and β-caryophyllene (17%). The essential oil from field-grown plant was dominated by the presence of oxygenated monoterpenes (41.5%), monoterpene hydrocarbons (35.9%) and sesquiterpene hydrocarbons (16.3%) while as the essential oil of micropropagated plants was characterized by sesquiterpene hydrocarbons (40.0%), oxygenated monoterpenes (25.2%) and monoterpene hydrocarbons (21.6%).  相似文献   

12.
In this study we determined oil degradation rates in the North Sea under most natural conditions. We used the heavy fuel oil, Bunker C, the major oil pollutant of the North Sea, as the model oil. Experiments were conducted in closed systems with water sampled during winter and repeated under identical conditions with water collected during summer. No nitrogen or phosphorous was added and conditions were chosen such that neither oxygen nor nutrients, present in the water, would become limiting during the experiments. We detected a fourfold increased degradation rate for water samples taken in summer (18°C water temperature) as compared to water sampled in winter (4°C water temperature). Under the assumption that biodegradation of oil can be regarded as a Michaelis-Menten type kinetic reaction, the kinectic constants Vmax and KM were determined for oil biodegradation at 4°C and 18°C. At both temperatures KM was about 40 ppm, whereas Vmax was 3–4 times higher at 18°C. From both Vmax and the results of fermentation studies, we determined the maximum rates of Bunker C oil degradation in the North Sea as ∼20 g m−3a−1 at 4°C in winter and 60–80 g m−3a−1 at 18°C in summer. Furthermore, while over 25% of the oil was degraded within 6 weeks in summer, only 6.6% of the oil was degraded in winter. A higher incubation temperature in winter (18°C) increased both the rate and the percentage of oil degraded, but degradation did not reach the level obtained during the summer. While these data reflect the oxidation only of the hydrocarbons, we conducted experiments directly in the open sea to determine the contribution of abiotic factors to oil removal. Approximately 42% of the oil was lost within 6 weeks under these conditions in summer and 65% in winter. However, GC-MS analysis of the recovered oil showed no significant change in the alkane pattern that would indicate enhanced degradation. Thus, mainly abiotic factors such as erosion and dispersion rather than degradation were responsible for enhanced oil removal. Especially the high loss during winter can be attributed to frequent storms resulting in greater dispersion. In conclusion, the higher oil degrading potential of the microbial population in the North Sea was represented by a four times faster oil degradation during the summer. In-situ experiments showed that abiotic factors can have an equal (summer) or even higher (winter) impact on oil removal.  相似文献   

13.
The aim of this work was to study the effect of long-term contrasting cropping systems on the indigenous arbuscular mycorrhizal fungal (AMF) spore populations in the soil of a field experiment located in western Finland. Conventional and low-input cropping systems were compared, each with two nutrient management regimes. The conventional cropping system with a non-leguminous 6-year crop rotation (barley–barley–rye–oat–potato–oat) was fertilized at either full (rotation A) or half (rotation B) the recommended rate. In the low-input cropping system, plant residues were returned to the plots either as such (rotation C) or composted (rotation D). In the rotation of this system, 1 year with barley was replaced by clover, and oat was cultivated mixed with pea. Thus, the 6-year rotation was barley–red clover–rye–oat + pea–potato–oat + pea. Each rotation was replicated three times, starting the 6-year rotation in three different years, these being designated point 1, point 2, and point 3, respectively. In the low-input system, biotite and rock phosphate were used to compensate for K and P in the harvested yield, while animal manure was applied at the start only. After 13 years, rotation points 1 and 3 were studied. Barley was the standing crop in all plots of rotation point 1, while oat and oat + pea were grown in rotations C and D, respectively. AMF spores were studied by direct extraction and by trapping, sampled on 15 June and 15 August. In addition, a special assay was designed for isolation of fast colonizing, dominating AMF. The cropping system did not significantly affect AMF spore densities, although the low-input cropping system with composted plant residues had the highest density with 44 spores on average and the conventional system with full fertilization 24 spores per 100 cm3 soil in the autumn samples. Species richness was low in the experimental area. Five Glomus spp., one Acaulospora, and one Scutellospora were identified at the species level. In addition to these, three unidentified Glomus spp. were found. Species richness was not affected by cropping system, rotation point, or their interactions. The Shannon–Wiener index of AMF spore distributions was significantly higher in the fully fertilized than in the half-fertilized conventional plots. Glomus claroideum was the most commonly identified single species in the experimental area. It occurred in all the cropping systems and their various rotation points, representing about 30% of the total number of identified spores. In August, G. claroideum accounted for as much as 45–55% of the total numbers of spores identified in the conventional system with halved fertilization. In contrast, Glomus mosseae occurred more commonly in June (26%) than in August (9%). A bioassay using roots as inoculum for isolation and culture of dominating AMF was successfully developed and yielded only G. claroideum. This indicates a high probability of being able to more generally identify, isolate, and culture fast colonizing generalist AMF for use as inoculants in agriculture and horticulture.  相似文献   

14.
Little is known about how animals from tropical and subtropical climates adjust their energy expenditure to cope with seasonal changes of climate and food availability. To provide such information, we studied the thermal physiology, torpor patterns and energetics of the nocturnal blossom-bat (Syconycteris australis 18 g) from a subtropical habitat in both summer and winter. In both seasons, S. australis frequently entered daily torpor at ambient temperatures between 12 and 25°C when food and water were withheld. Unlike patterns observed in temperate animals, mean minimum metabolic rates during torpor were lower in summer (0.47 ± 0.07 ml O2 g−1 h−1) than in winter (0.75 ± 0.11 ml O2 g−1 h−1). Body temperatures during torpor were regulated at 19.3 ± 1.0°C in summer and at 23.4 ± 2.0°C in winter. Torpor bout duration was significantly longer in summer (7.3 ± 0.6 h) than in winter (5.5 ± 0.3 h), but in both seasons, bout duration was not affected by ambient temperature. Consequently, average daily metabolic rates were also significantly lower in summer than in winter. Body temperatures and metabolic rates in normothermic bats did not change with season. Our findings on seasonal changes of torpor in this bat from the subtropics are opposite to those made for many species from cold climates which generally show deeper and longer torpor in winter and are often entirely homeothermic in summer. More pronounced torpor in subtropical S. australis in summer may be due to low or unpredictable nectar availability, short nights which limit the time available for foraging, and long days without access to food. Thus, the reversed seasonal response of this subtropical bat in comparison to temperate species may be an appropriate response to ecological constraints. Received: 6 May 1997 / Accepted: 19 October 1997  相似文献   

15.
Larval diapause development in the chestnut weevilCurculio elephas (Coleoptera, Curculionidae) was studied in the laboratory at different temperatures. The results proved that exposure to low temperatures (3–6°C) in the period December–February is not required to complete diapause. The diapause is terminated in December and from January on, the larvae can initiate post-diapause morphogenesis in the laboratory, if temperatures allow it. In the field developmental rates are negligible during winter cold (4–6°C) and only after March morphogenesis can proceed with no interruption until adult emergence. Diapause and post-diapause quiescence contribute to individual synchronization for initiation of development. The observed spread of adult emergence was 30 days in the laboratory. This variability produced during post-diapause development may be a response to annual variation in the phenology of the chestnuts.  相似文献   

16.
The effect of fractionated Tagetes oil volatiles on aphid reproduction   总被引:1,自引:0,他引:1  
The biological activity of essential oil volatiles from Tagetes minuta L. (Mexican marigold) against three aphid species was investigated in a series of laboratory experiments. The aphid species (Homoptera: Aphididae) studied were: Acyrthosiphon pisum (Harris) (pea aphid), Myzus persicae (Sulzer) (peach‐potato aphid), and Aulacorthum solani (Kaltenbach) (glasshouse and potato aphid). Tagetes minuta oil volatiles significantly reduced aphid reproduction (up to 100% after 5 days of exposure). The effect depended on the quantity of essential oil used, and varied with the aphid species tested. Pea aphids were the most susceptible. Tagetes minuta oil was fractionated by vacuum distillation. Fractions and three pure compounds (limonene, (Z)‐ocimene, and β‐caryophyllene) were tested using the same experimental technique. The chemical composition of the volatiles was investigated by headspace–solid phase microextraction–gas chromatography mass spectrometry (HS‐SPME‐GCMS), and the main constituents of the oil were identified. Overall, applied in equal quantity, fractions predominantly containing sesquiterpenes and oxygenated monoterpenoids were more effective in restricting aphid population growth than fractions predominantly containing monoterpenes. When tested as a pure compound, the sesquiterpene β‐caryophyllene produced a greater effect than the monoterpenes limonene and ocimene. The study demonstrates that T. minuta oil volatiles have potential for aphid control.  相似文献   

17.
The change in isolation frequency ofTyphula ishikariensis from bentgrass leaves under snor cover on golf courses near Sapporo, Hokkaido was investigated over three consecutive winters.Agrostis palustris Huds. cv. Penncross growing at these sites was severely infested withT. ishikariensis biotype B. Isolation tests showed thatT. ishikariensis biotype B was first isolated 9 to 34 d after snow cover in December–January, and isolation frequency peaked in February–March. The fungus was never isolated from leaves after snowmelt. The behavior ofT. ishikariensis on bentgrass was discussed in terms of winter hardiness of plants and its epidemiology.  相似文献   

18.
The proximate chemical composition (ash, soluble carbohydrate, lipid and protein) was determined in 30 common species of tropical Australian marine macroalgae from Darwin Harbour (1226′S, 13051′E), in summer (hot and wet) and winter (cool and dry). There was a wide diversity of species in both seasons (19 species in summer and 20 species in winter). In most species, the major component was soluble carbohydrate (chlorophytes range 2.5–25.8% dry weight (dw), phaeophytes range 8.4–22.2% dw, rhodophytes range 18.7–39.2% dw) with significantly higher (p < 0.05) percentages only in winter season rhodophytes. Highest percentages of protein were found in rhodophytes collected in the summer (range 4.8–12.8% dw), with significantly lower percentages (p < 0.05) during winter. All species had lipid contents within the range 1.3–7.8% dw, with highest percentages in summer phaeophytes, but no significant differences between species or season. Most species had moderate to high ash contents (24.2–89.7% dw), with the highest percentages during summer. Compared with summer samples, macroalgae collected in winter had higher energy value and slightly lower percentages of inorganic matter. The variation of algal groups and chemical composition may influence the availability of the food source for the majority of herbivores, which in turn is likely to effect their ecology and community structure.  相似文献   

19.
The goal of this study was to analyze the variations in abundance of rodent communities over the last 24 years in a rural area, and their relation to possible changes in climatic variables and land use. The principal change in the area observed along the study period was an increase in the area covered by soybean. The habitats studied were crop fields and borders. The total abundance of rodents did not show a significant trend of variation over time in crop fields while in borders the abundance in autumn–winter (A–W) showed a significant trend to decrease over time. The different rodent species showed a differential response over time. While Calomys laucha and C. musculinus showed a decrease between the period before and after the soybean expansion, Akodon azarae did not change its abundance over time. The mean minimum temperature increased over time while the number of days with frost decreased. Total rodent abundance in A–W was positively associated with the cumulated precipitation of the previous spring–summer period and negatively with the cumulated precipitation of the same period. We conclude that rodent abundance variations in crop fields and borders of the study area are influenced by precipitation, but the observed trends of variation over time are better explained by changes in agricultural practices than by meteorological variables.  相似文献   

20.
In the fell-field habitat at 140–270 m altitude on the sub-Antarctic Ile de la Possession, Iles Crozet, the dimorphic beetle Amblystogenium pacificum Putzeys (Coleoptera: Carabidae) was studied monthly throughout the southern year 1993–1994 by timed hand collections involving turning stones on the rocky fell-field. There were many mating couples and females containing well-developed eggs in every month and the species reproduced throughout the year, with no evidence of a winter cessation of egg production. However, the frequency of mating couples was about twice as great in the summer half-year (October–March) as in the winter half (April–September). Relatively small differences in monthly mean temperatures between the summer and winter at Iles Crozet render all-year reproduction not unexpected when comparisons are made with the temperatures and phenology of Carabidae in cool habitats in other parts of the world. Mating pairs were collected at unusually high frequencies for carabids. The frequency of such pairs, taken per unit effort by hand collecting, was highest in October–December, lower from January to May and intermediate from June to September. Comparison of beetles taken as solitary, non-mating individuals with those taken as mating couples showed that in summer, females of the black morph of this dimorphic species were more frequently involved in mating than expected, but no differences were detected in winter. Female beetles were divided into younger individuals (putative age 1–2 years) and older females (putative age 3–5 years or more) by the amount of claw-wear on individuals of this species. This division indicated that about 40% of the older females showed no egg development when captured, but only about 20% of the younger females were non-breeding. However, of the reproducing beetles, young and old females matured similar numbers of eggs. An altitude transect showed that the proportion of the black morph increased significantly with altitude. Studies at 140–270 m showed that a significantly smaller proportion of the older females of the brown morph were breeding than in the younger brown individuals, and this effect was particularly evident in the colder winter period. No such age differences existed amongst the black morph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号