首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinucleoside polyphosphates have been characterised as extracellular mediators controlling numerous physiological functions like vascular tone or cell proliferation. Here we describe the isolation and identification of dinucleoside polyphosphates Ap(n)A (with n=2-3), Ap(n)G (with n=2-6) as well as Gp(n)G (with n=2-6) from adrenal glands. These dinucleoside polyphosphates are localised in granules of the adrenal glands. The dinucleoside polyphosphates diadenosine diphosphate (Ap(2)A), diadenosine triphosphate (Ap(3)A), adenosine guanosine polyphosphates (Ap(n)G) and diguanosine polyphosphates (Gp(n)G), both with phosphate group (p) numbers (n) ranging from 2 to 6, were identified by fractionating them to homogeneity by preparative size-exclusion- and affinity-chromatography as well as analytical anion-exchange and reversed-phase-chromatography from deproteinised adrenal glands and by analysis of the homogeneous dinucleoside polyphosphates containing fractions with post-source-decay (PSD) matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). The identity of the dinucleoside polyphosphates was confirmed by retention time comparison with authentic dinucleoside polyphosphates. Enzymatic analysis demonstrated an interconnection of the phosphate groups with the adenosines in the 5(')-positions of the riboses in all dinucleoside polyphosphates purified from adrenal glands. In conclusion, the identification of these dinucleoside polyphosphates in adrenal gland granules emphasises that these dinucleoside polyphosphates can be released from the adrenal glands upon stimulation into the circulation.  相似文献   

2.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

3.
Diadenosine pentaphosphate and diadenosine hexaphosphate have been isolated in human platelets and have been postulated to play an important role in the control of vascular tone. Here we describe the isolation and identification of diadenosine heptaphosphate from human platelets. Dinucleoside polyphosphates were concentrated by affinity chromatography from a nucleotide-containing fraction from deproteinated human platelets. Dinucleoside polyphosphates were purified by anion-exchange and reversed phase high performance liquid chromatography to homogeneity. Analysis of one of these fractions with matrix-assisted laser desorption/ionization mass spectrometry revealed a molecular mass of 1076.4 (1077.4 = [M + H](+)) Da. UV spectroscopic analysis of this fraction showed the spectrum of an adenosine derivative. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrum of the fraction minus that of diadenosine heptaphosphate (Ap(7)A) demonstrated that the isolated substance was identical to Ap(7)A. The identity of the retention times of the authentic and the isolated compound confirmed this result. Enzymatic analysis demonstrated an interconnection of the phosphate groups with the adenosines in the 5'-positions of the riboses. With thrombin-induced platelet aggregation, Ap(7)A is released from the platelets into the extracellular space. The vasoconstrictive action of Ap(7)A on the vasculature of the isolated perfused rat kidney Ap(7)A was slightly less than that of Ap(6)A. The threshold of the vasoconstrictive action of Ap(7)A was 10(-5) mol/liter. The vasoconstrictive effect was abolished by suramin and pyridoxal phosphate 6-azophenyl-2', 4'-disulfonic acid, suggesting an activation of P(2x) receptors. Furthermore, Ap(7)A inhibits ADP-induced platelet aggregation. Thus, the potent vasoconstrictor Ap(7)A derived from human platelets, like other diadenosine polyphosphates, may play a role in the regulation of vascular tone and hemostasis.  相似文献   

4.
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).  相似文献   

5.
J Lüthje  J Baringer  A Ogilvie 《Blut》1985,51(6):405-413
The effects on platelet aggregation of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A), both of which are stored in and released from platelet granules, have been studied in unfractionated human blood using a microscopic platelet-count ratio method. Ap3A at submicromolar concentrations induces platelet aggregation whereas the homologue dinucleotide Ap4A has disaggregating potency. In the concentration range between 10(-7) to 10(-5) M, Ap3A has been found to be as effective as ADP in triggering aggregate formation. These results confirm and essentially extend our recent findings with platelet-rich plasma that Ap3A is able to trigger platelet aggregation by a slow release of ADP from Ap3A which is catalyzed by a plasma hydrolase. Formation of platelet aggregates was also followed kinetically using a turbidometric method which has been developed for this purpose. In contrast to ADP which very rapidly induces a transient state of aggregation, the effect of Ap3A occurs much more slowly but induces the same maximum of aggregation. The duration of the Ap3A stimulus, however, is longer than that of ADP pointing to a potential physiological function of Ap3A as a "masked" source for ADP.  相似文献   

6.
The unusual bis(5'-nucleosidyl)oligophosphates: Ap4A, Ap4G, Ap3A, and Ap3G, have been measured in cultures of Drosophila cells. Exponentially growing cells contain concentrations of 0.25, 0.31, 0.87, and 2.25 microM, respectively. These nucleotides have been followed after stressing the cells either by CdCl2 addition or by heat-shock treatment. Their concentrations are not affected by exposure to 500 microM CdCl2 during 6 h. Beyond this threshold of cadmium concentration, the nucleotides increase. With 5 mM CdCl2, an enhancement by 2 orders of magnitude of all the dinucleoside tri- and tetra-phosphates is observed. Upon heat-shock from 19 to 37 degrees C, Ap4A, Ap3A, and Ap3G increase up to 2.2, 3, and 3.3 times their initial levels, respectively. The increase is achieved within 1 h.  相似文献   

7.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

8.
Adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A) are stored in large amounts in human platelets. After activation of the platelets both dinucleotides are released into the extracellular milieu where they play a role in the modulation of platelet aggregation and also in the regulation of the vasotone. It has recently been shown that the dinucleotides are degraded by enzymes present in the plasma [Lüthje, J. & Ogilvie, A. (1987) Eur. J. Biochem. 169, 385-388]. The further metabolism as well as the role of blood cells has not been established. The dinucleotides were first degraded by plasma phosphodiesterases yielding ATP (ADP) plus AMP as products which were then metabolized to adenosine and inosine. The nucleosides did not accumulate but were very rapidly salvaged by erythrocytes yielding intracellular ATP as the main product. Although lysates of platelets, leucocytes and red blood cells contained large amounts of Ap3A-degrading and Ap4A-degrading activities, these activities were not detectable in suspensions of intact cells suggesting the lack of dinucleotide-hydrolyzing ectoenzymes. Compared to ATP, which is rapidly degraded by ectoenzymes present on blood cells, the half-life of Ap4A was two to three times longer. Since the dinucleotides are secreted together with ADP and ATP from the platelets, we tested the influence of ATP on the rate of degradation of Ap4A. ATP at concentrations present during platelet aggregation strongly inhibited the degradation of Ap4A in whole blood. It is suggested that in vivo the dinucleotides are protected from degradation immediately after their release. They may thus survive for rather long times and may act as signals even at sites far away from the platelet aggregate.  相似文献   

9.
The diadenosine polyphosphates--Ap4A and Ap5A--were released from perfused bovine adrenal glands and recently isolated chromaffin cells by the action of carbachol. The H.P.L.C. technique reported here allowed the quantification of pmol amounts of these compounds present in biological samples from the perfusion media after stimulation. Both compounds (Ap4A and Ap5A) were identified by the retention time in H.P.L.C. chromatography, co-elution with standards, re-chromatography and destruction by the phosphodiesterase action. Bovine adrenal glands stimulated with 100 microM carbachol released 0.47 +/- 0.12 nmol/gland of Ap4A and 1.11 +/- 0.26 nmol/gland of Ap5A. Isolated bovine chromaffin cells after 100 microM carbachol, as secretagogue, released 11.1 +/- 0.8 pmol/10(6) cells of Ap4A and 15.8 +/- 1.1 pmol/10(6) cells of Ap5A. The ratio of these compounds with respect to the exocytotically released ATP and catecholamines was in the same order as that found in isolated chromaffin granules.  相似文献   

10.
1. Phosphorolytic cleavage of Ap(4),A was demonstrated in cell-free extracts from two protozoan organisms, Euglena gracilis and Acanthamoeba castellanii. 2. A specific dinucleoside oligophosphate (DNOP) alpha, beta-phosphorylase which degrades substrates with formation of corresponding nucleoside 5'-diphosphate (NDP) as one of the reaction products was purified 625-fold from Euglena gracilis cells. 3. In addition to Ap(4)A, the phosphorylase degrades AP(3)A, Ap(5)A, Gp(4)G and one of phosphonate analogs, ApppCH(2)pA. The K(m) values for Ap(4), A and Ap(3) A are 27 and 25 micron, and relative velocities 100 and 14, respectively. The K(m) for phosphate is 0.5 mM. 4. Some anions (arsenate, chromate, molybdate and vanadate) can substitute for phosphate in the catalyzed reactions and in their presence the DNOPs yield corresponding nucleoside 5'-monophosphate as one of the reactions' product. The enzyme supports also an anion-dependent dephosphorylation of NDPs. 5. Molecular weight of the native Euglena phosphorylase is 30,000. Optimum pH for its activity is at 8.0 Divalent metal cations are essential for the phosphorolysis of DNOPs but are not for the NDP dephosphorylation mentioned.  相似文献   

11.
Diadenosine 5',5'-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells. Here we show that Ap2A and its isomers are present in resting human platelets and are released during thrombin-induced platelet activation. The three adenylic dinucleotides were identified by high pressure liquid chromatography through a comparison with the retention times and the absorption spectra of purified standards. Ap2A, P18, and P24 had no direct effect on platelet aggregation, but they inhibited platelet aggregation induced by physiological agonists (thrombin, ADP, and collagen), with mean IC(50) values ranging between 5 and 15 mum. Moreover, the three dinucleotides did not modify the intracellular calcium concentration in resting platelets, whereas they significantly reduced the thrombin-induced intracellular calcium increase. Through binding to the purinergic receptor P2Y(11), exogenously applied Ap2A, P18, and P24 increased the intracellular cAMP concentration and stimulated platelet production of nitric oxide, the most important endogenous antiaggregant. The presence of Ap2A, P18, and P24 in resting platelets and their release during thrombin-induced platelet activation at concentrations equal to or higher than the respective IC(50) value on platelet aggregation suggest a role of these dinucleotides as endogenous negative modulators of aggregation.  相似文献   

12.
J Lüthje  D Miller  A Ogilvie 《Blut》1987,54(4):193-200
Platelets from whole blood were separated into five density subpopulations using a discontinuous Percoll gradient. The content of diadenosine triphosphate (Ap3A), diadenosine tetraphosphate (Ap4A), ADP and ATP were determined in the subfractions. The dinucleotides were directly measured in neutralized, acid-soluble extracts of human platelets with a bioluminescence method not requiring any chromatographic step. When comparing the nucleotide contents of the density subpopulations it became evident that all nucleotides steadily increased with increasing density. Ap3A, Ap4A, ADP and ATP were present in 10-, 7-, 4- and 2-fold higher amounts in the heaviest platelets, respectively, as compared to the subfraction with the lowest density. This finding is practically relevant since the most dense platelet subpopulations may be lost during conventional centrifugation to obtain platelet-rich plasma. Therefore we compared a platelet population obtained from PRP with the platelet population, which had been prepared from whole blood by means of a continuous Percoll gradient. All the four nucleotides investigated were represented in 1.5- to 2-fold higher amounts in the whole blood platelet population. This indicates that PRP does not contain a representative population but lacks part of the large heavy platelets containing the highest amounts of nucleotides.  相似文献   

13.
Endocrine functions of the human heart have been studied extensively. Only recently, nucleotidergic mechanisms have been studied in detail. Therefore, an isolation strategy was developed to isolate novel nucleotide compounds from human myocardium. The human myocardial tissue was fractionated by several chromatographic studies. A substance purified to homogeneity was identified as adenosine 5'-tetraphosphate (Ap(4)) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), post-source decay MALDI MS, and enzymatic cleavage analysis. Furthermore, Ap(4) was also identified in ventricular specific granules. In the isolated perfused rat heart, Ap(4) elicited dose-dependent vasodilations. Vasodilator responses were abolished in the presence of the P(2Y1) receptor antagonist MRS 2179 (1 microm) or the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (50 microm). After removal of the endothelium by Triton X-100, Ap(4) induced dose-dependent vasoconstrictions. Inhibition of P(2X) receptors by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (30 microm) or desensitization of P(2X) receptors by alpha,beta-methylene ATP (alpha,beta-meATP, 1 microm) diminished these vasoconstrictor responses completely. In the present study Ap(4) has been isolated from human tissue. Ap(4) was shown to exist in human myocardial tissue and was identified in ventricular specific granules. In coronary vasculature the nucleotide exerted vasodilation via endothelial P(2Y1) receptors and vasoconstriction via P(2X) receptors on vascular smooth muscle cells. Ap(4) acts as an endogenous extracellular mediator and might contribute to the regulation of coronary perfusion.  相似文献   

14.
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.  相似文献   

15.
A new procedure was described for assay of diadenosine tetraphosphate (Ap4A) hydrolases based on boronate chromatography. Potential reaction products, AMP, ADP, and ATP, of the hydrolysis of Ap4A were separated from residual substrate by chromatography on a boronate-derivatized cation-exchange resin, Bio-Rex 70. Separation was achieved by changing the concentrations of ethanol and ammonium acetate in the elution buffers. Picomole masses of products were detectable, blank dpm values were less than 0.5% of the total dpm, and auxiliary enzymes were not required. The procedure was specifically described for Ap4A pyrophosphohydrolase from Physarum polycephalum. The assay is generally applicable for dinucleoside polyphosphate hydrolases which hydrolyze other substrates such as Ap3A, Ap5A, Ap6A, and Gp4G. Dinucleotide polyphosphates are readily purified by chromatography on this boronate resin in a volatile buffer. Tes, Tricine, and Tris buffers significantly interfered with the chromatography of ATP.  相似文献   

16.
An ectoenzyme hydrolyzing diadenosine polyphosphates (ApnA) to AMP and Ap(n-1) has been studied in cultured chromaffin cells from bovine adrenal medulla. The KM value for extracellular Ap4A hydrolysis was 2.90 +/- 0.72 microM, the V(max) value obtained was 11.59 +/- 0.92 pmol/min x 10(6) cells (116 pmol/min.mg total protein). Ap3A, Ap5A, Ap6A, and Gp4G were competitive inhibitors of Ap4A hydrolysis with K(i) values of 3.65, 1.10, 1.20, and 2.65 microM, respectively. Phosphatidylinositol-specific phospholipase C removes the ApnA hydrolase activity from cultured chromaffin cells, suggesting an anchorage of this protein to the plasma membrane through the phosphatidylinositol. The turnover time for this enzyme calculated in the presence of cycloheximide was 38.94 +/- 1.53 hr for cultured chromaffin cells.  相似文献   

17.
The P1P4-bis(5'-nucleosidyl) tetraphosphate asymmetrical-pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia has been purified over 11,000-fold to homogeneity. Anion-exchange chromatography resolves two major species with very similar properties. The enzyme is a single polypeptide of Mr 17,600 and is maximally active at pH 8.4 and 2 mM-Mg2+. It is inhibited by Ca2+ (IC50 = 0.9 mM with 2 mM-Mg2+) but not by Zn2+ ions. It preferentially hydrolyses P1P4-bis(5'-nucleosidyl) tetraphosphates, e.g. P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) (kcat. = 12.7 s-1; Km = 33 microM) and P1P4-bis(5'-guanosyl) tetraphosphate (Gp4G) (kcat. = 6.2 s-1; Km = 5 microM). With adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) as substrate, there is a 4.5-fold preference for AMP and GTP as products and biphasic reaction kinetics are observed giving Km values of 4.7 microM and 34 microM, and corresponding rate constants of 6.5 s-1 and 11.9 s-1. The net rate constant for Ap4G hydrolysis is 7.6 s-1. The enzyme will also hydrolyse nucleotides with more than four phosphate groups, e.g. Ap5G, Ap6A and Gp5G are hydrolysed at 25%, 18% and 10% of the rate of Ap4A respectively. An NTP is always one of the products. Ap2A and Gp2G are not hydrolysed, while Ap3A and Gp3G are very poor substrates. When the enzyme is partially purified from embryos and larvae at different stages of development by sedimentation through a sucrose density gradient, its activity increases 3-fold during the first 12 h of pre-emergence development. This is followed by a slow decline during subsequent larval development. The similarity of this enzyme to other asymmetrical-pyrophosphohydrolases suggests that it did not evolve specifically to degrade the large yolk platelet store of Gp4G which is found in Artemia embryos, but that it probably serves the same general function in bis(5'-nucleosidyl) oligophosphate metabolism as in other cells.  相似文献   

18.
Several dinucleoside polyphosphates accept cytidine-3', 5'-bisphosphate from the adenylylated donor 5'-adenylylated cytidine 5',3'-bisphosphate in the T4 RNA ligase catalyzed reaction. The 5'-adenylylated cytidine 5',3'-bisphosphate synthesized in a first step, from ATP and cytidine-3',5'-bisphosphate, is used as a substrate to transfer the cytidine-3',5'-bisphosphate residue to the 3'-OH group(s) of diguanosine tetraphosphate (Gp4G) giving rise to Gp4GpCp and pCpGp4GpCp in a ratio of approximately 10 : 1, respectively. The synthesized Gp4GpCp was characterized by treatment with snake venom phosphodiesterase and alkaline phosphatase and analysis (chromatographic position and UV spectra) of the reaction products by HPLC. The apparent Km values measured for Gp4G and 5'-adenylylated cytidine 5',3'-bisphosphate in this reaction were approximately 4 mM and 0.4 mM, respectively. In the presence of 0.5 mM ATP and 0.5 mM cytidine-3',5'-bisphosphate, the relative efficiencies of the following nucleoside(5')oligophospho(5')nucleosides as acceptors of cytidine-3',5'-bisphosphate from 5'-adenylylated cytidine 5', 3'-bisphosphate are indicated in parentheses: Gp4G (100); Gp5G (101); Ap4G (47); Ap4A (39). Gp2G, Gp3G and Xp4X were not substrates of the reaction. Dinucleotides containing two guanines and at least four inner phosphates were the preferred acceptors of cytidine-3', 5'-bisphosphate at their 3'-OH group(s).  相似文献   

19.
The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.  相似文献   

20.
Individual analysis of synaptic terminals calcium responses, induced by dinucleotides pentaphosphate, Ap(5)A or Gp(5)G, demonstrates the presence of two main groups considering the concentration required for stimulation. The first group corresponds to those responding to Ap(5)A or Gp(5)G at nanomolar concentration, representing 16% and 12%, respectively, and the second one responds to micromolar concentration and represents, respectively, 17% and 14%, of the total functional synaptosomal population in rat midbrain. Dose-response curves in single terminals showed an Ap(5)A EC(50) values of 0.9+/-0.2 nM and 11.8+/-0.9 microM, being the maximal intrasynaptosomal calcium increase of 200+/-0.3 and 125+/-0.2 nM for the high and low affinity responding terminals, respectively. Combination of microfluorimetric and immunocytochemical studies showed lack of correlation between dinucleotides pentaphosphate responses and P2X receptor subunits expression, in spite of the abundance of P2X(2), P2X(3) and P2X(7) at the presynaptic level in rat midbrain synaptosomes. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2X receptors antagonist, showed no effect on low affinity dinucleotides receptors population, and partial inhibition on the high affinity one. On the other hand, diinosine pentaphosphate (Ip(5)I) completely abolished the low affinity dinucleotides responses, and 60% inhibition of the high affinity ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号