首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth of GS transgenic poplar plantlets was 5-fold greater than controls. The response of young leaves to PPT treatment depends on physiological state as indicated by GS and Rubisco (LSU) levels. Young leaves from control plants, typically in a low differentiation state, respond to the herbicide showing up-regulation of GS and LSU. In contrast, young leaves from transgenic lines, with higher initial GS and LSU levels compared to control, display up-regulation of NADP(+)-isocitrate dehydrogenase. Differences between control and GS transgenics in their response to PPT are discussed in relation to their differences in photosynthetic and photorespiratory capacities (El-Khatib et al., 2004).  相似文献   

2.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

3.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

4.
Crude extracts of Clostridium thermoaceticum DSM 521 contain various AMAPORs (artificial mediator accepting pyridine nucleotide oxidoreductases). The specific activities of this mixture of AMAPORs is about 8–9 U mg?1 protein (µmoles mg?1 min?1) for NADPH and 3–4 U mg?1 protein for NADH formation with reduced methylviologen (MV++) as electron donor. These AMAPOR-activities are only slightly oxygen sensitive. The reoxidation of NADPH and NADH with carboxamido-methylviologen is catalysed by crude extracts with 2.0 and 1.6 U mg?1 protein, respectively. The same crude extracts also catalyse the dehydrogenation of reduced pyridine nucleotides with suitable quinones such as anthraquinone-2,6-disulphonate. The reduced quinone can be reoxidised by dioxygen.

The Km-values of these enzymes for the pyridine nucleotides and also for the artificial electron mediators are in a suitable range for preparative transformations.

Furthermore the crude extract of C. thermoaceticum contains about 2.5 U mg?1 protein of an NADP+-dependent formate dehydrogenase (FDH), which is suitable for NADPH and/or MV++ regeneration. The regeneration of MV++ with FDH and formate as electron donor proceeds with a specific activity of about 5 U mg?1 protein of the crude extract. The reduced viologen in turn reduces NAD(P)+ by AMAPOR. The formate dehydrogenase is sensitive to oxygen.

Examples of compounds which have been prepared by combination of AMAPORs or formate dehydrogenase with an oxidoreductase are: (S)-3-hydroxycarboxylates, esters of (S)-3-hydroxycarboxylates, (1R,2S)-1-hydroxypropane-tricarboxylate (Ds-(+)-isocitrate), Ls-(-)-isocitrate and 6-phosphogluconate.  相似文献   

5.
6.
TNF-alpha is believed to play a pivotal role in the pathogenesis of inflammatory bowel diseases which have diarrhea as one of their symptoms. This work studies the effect of the cytokine on electrolyte and water movements in the rat distal colon using an intestinal perfusion technique and attempts to determine its underlying mechanism of action. TNF-alpha inhibited net water and chloride absorption, down-regulated in both surface and crypt colonocytes the Na+-K+-2Cl- cotransporter, and reduced the protein expression and activity of the Na+-K+ ATPase. Indomethacin up-regulated the pump and the cotransporter in surface cells but not in crypt cells, and in its presence, TNF-alpha could not exert its effect, suggesting an involvement of PGE2 in the cytokine action. The effect of TNF-alpha on the pump and symporter was studied also in cultured Caco-2 cells in isolation of the effect of other cells and tissues, to test whether the cytokine acts directly on intestinal cells. In these cells, TNF-alpha and PGE2 had a similar effect on the pump expression and activity as that observed in crypt cells but were without any effect on the Na+-K+-2Cl- cotransporter. It was concluded that the effect of the cytokine on colonocytes is mediated via PGE2. By inhibiting the Na+-K+ ATPase, it reduces the Na+ gradient needed for NaCl absorption, and by down-regulating the expression of the Na+-K+-2Cl- symporter, it reduces basolateral Cl- entry and luminal Cl- secretion. The inhibitory effect on absorption is more significant than the inhibitory effect on secretion resulting in a decrease in net electrolyte uptake and consequently in more water retention in the lumen.  相似文献   

7.
8.
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.  相似文献   

9.
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that catalyze the deacetylation of proteins such as histones and p53. A sensitive and convenient fluorometric assay for evaluating the SIRT1 enzymatic activity was developed here. Specifically, the remaining NAD+ after the deacetylation was determined by converting NAD+ to a highly fluorescent cyclized α-adduct compound. By this assay, we found that nicotinamide, Cu2+, and Zn2+ antagonize the activity of SIRT1. Resveratrol stimulates the enzymatic activity specifically with 7-amino-4-methylcoumarin (AMC)-labeled acetylated peptide. Epigallocatechin galate (EGCG) inhibits SIRT1 activity with both AMC-labeled and unlabeled peptide. However, a combination of vitamin C with EGCG can reverse the inhibition of EGCG with the unlabeled peptide or stimulate the deacetylation of AMC-labeled peptide by SIRT1. The assay does not require any isotopic material and thus is biologically safe. It can be adapted to a 96-well microplate for high-throughput screening. Notably, the acetylated peptides with or without fluorescent labels may be used in the assay, which facilitates the substrate specificity study of SIRT1 activators or inhibitors in vitro.  相似文献   

10.
Summary Chloroplastic (NADP+) glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.9) catalyzes the second reaction in photosynthesis after the fixation of carbon by RuBisCO. Chloroplast-bound (NADP+) G3PDH was resolved in soybean by starch gel electrophoresis using l-histidine-citrate buffer (pH 5.7). Histochemical staining revealed zymogram patterns indicative of a tetramer. A survey of soybean genotypes revealed differences in zymogram patterns between the principal cytoplasmic sources of the northern and southern US germplasms. In the soybean pedigree, an allelic frequency shift toward a five-banded pattern was observed. G3PDH polymorphism was due to allele associated with gene expression at the slow locus. No linkage was found between the slow locus of (NADP+) G3PDH and AC02, AC03, AC04, ACP, DIA1, IDH1, IDH2, PGM1, and PGM3. Developmental expression in the above-ground tissues was identical, whereas roots as a rule did not express (NADP+) G3PDH activity. The importance of chloroplast-bound (NADP+) G3PDH in photo-synthesis and its interesting mode of inheritance warrants further exploration of this enzyme in soybean.Technical contribution no. 3293 of the South Carolina Agricultural Experiment Station, Clemson University  相似文献   

11.
Estrogen levels in the gonads of marine bivalves, the Pacific oyster Crassostrea gigas and scallop Patinopecten yessoensis were determined by high performance liquid chromatography (HPLC) using an electrochemical detector. Estrone (E1), estradiol-17β (E2), and a small amount of estriol (E3) were identified in the ovary, while only E2 was found in the testis. The level of E2 in the ovary was consistently higher than E1 and it increased with sexual maturation. These results indicate that E2 may play a role in the reproductive events of the oyster and scallop. In vitro experiments demonstrated the presence of 17β-hydroxysteroid dehydrogenase (17β-HSD) in the ovaries of both bivalves. The activity of 17β-HSD in the ovary was lower in the postspawning stage than in the early differentiating stage. The evidence for the presence of aromatase activity in the scallop ovary was obtained by 3H-water assay. The immunoreactivity against 3β-hydroxysteroid dehydrogenase (3β-HSD), P450 aromatase and E2 was detected in the cells along the outside of germinal acini of the scallop ovary. It is concluded that estrogens can be synthesized in the gonad, that their levels vary with the reproductive cycle, and that they have a role in the development of gametes.  相似文献   

12.
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.  相似文献   

13.
The molecular and crystal structures of six fully blocked, Ac3c-rich peptides to the tetramer level were determined by X-ray diffraction. The peptides are Fmoc-(Ac3c)2-OMe·CH3OH, Ac-(Ac3c)2-OMe, t-Boc-Ac3c-l-Phe-OMe, pBrBz-(Ac3c)3-OMe·H2O, Z-Gly-Ac3c-Gly-OTmb·(CH32CO, andt-Boc-(Ac3c)4-OMe·2H2O. Type-I (I′) β-bends and distorted 310-helices were found to be typical of the tri- and tetrapeptides, respectively. In the dipeptides, too short to form β-bend conformations, other less common structural features may be observed. The average geometry of the cyclopropyl moiety of the Ac3c residue is asymmetric and the N-Cα-C′ bond angle is significantly expanded from the regular tetrahedral value. A comparison with the structural preferences of other extensively investigated Cα,α-dialkylated α-amino acids is made and the implications for the use of the Ac3c residue in conformational design are examined.  相似文献   

14.
Recent studies have shown that cells from bone marrow (BM) can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved remain unknown. We performed BM transplantation in acid alpha-glucosidase (GAA) knockout mice, a model of glycogen storage disease type II, and our observations suggested that the BM cells contribute to skeletal muscle fiber formation. Furthermore, we showed that most CD45+:Sca1+ cells have a donor character in regenerating muscle of recipient mice. Based on these findings, CD45+:Sca1+ cells were sorted from regenerating muscles. The cell number was increased with granulocyte colony-stimulating factor after cardiotoxin injury, and the cells were transplanted directly into the tibialis anterior (TA) muscles of GAA knockout mice. Sections of the TA muscles stained with anti-laminin-alpha2 antibody showed that the number of CD45+:Sca1+ cells contributing to muscle fiber formation and glycogen levels were decreased in transplanted muscles. Our results indicated that hematopoietic stem cells, such as CD45+:Sca1+ cells, are involved in skeletal muscle regeneration.  相似文献   

15.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

16.
    
The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The K m values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.  相似文献   

17.
A series of 5-aryl-3-alkylidenedihydrofuran-2(3H)-ones 6ag″ and 11a,b as well as 5-aryl-3-methylidenepyrrolidin-2-ones 10ac and 12 were synthesized starting from 4-aryl-2-diethoxyphosphoryl-4-oxobutanoates 3ag. Reaction sequence includes reduction or reductive amination of the carbonyl group, lactonization or lactamization step and finally the Horner–Wadsworth–Emmons olefination of aldehydes using thus obtained 5-aryl-3-diethoxyphosphoryl-3,4-dihydrofuran-2(5H)-ones 5ag″ or 5-aryl-3-diethoxyphosphorylpyrrolidin-2-ones 9ac. Furanones 6 and 11, as well as pyrrolidinones 10 and 12, were evaluated in vitro against mouse leukemia cell line L-1210 and two human leukemia cell lines HL-60 and NALM-6. Several of the obtained furanones proved to be very potent against all three cell lines with IC50 values lower than 6 μM. Structure–activity relationships of these compounds, as well as 5-alkyl or 5-arylmethyl-3-methylidenedihydrofuran-2(3H)-ones 13ae, previously obtained in our laboratory, are discussed.  相似文献   

18.
We observed a spot on two-dimensional (2-D) gel in the epileptic mutant strain El mice with a similar molecular weight but with a different isoelectric point of approximately 0.2, compared with its mother strain ddY mice. The collected protein from the El mice was identified as cytosolic NADP+-dependent isocitrate dehydrogenase by internal amino acid sequencing. The enzyme is known to be maximally active during the development of the brain and to play an important role in NADPH production for fatty acids and cholesterol synthesis. In addition, alterations in cholesterol synthesis early in the development of the mammalian brain have been reported to lead to chronic epilepsy. The results in the present study therefore suggest that cytosolic NADP+-dependent isocitrate dehydrogenase might be involved in the epileptogenesis of the El mouse.  相似文献   

19.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

20.
Microsomal membranes isolated by sucrose density gradient centrifugation from mature toad ovary has been found to vary significantly in lipid composition and various enzyme activities in different seasons. Na+, K+—ATPase activity is the highest in breeding season (rainy season). Significantly the optimum temperature for enzyme activity is 30°C. The other enzyme Δ5-3β-hydroxysteroid dehydrogenase activity is also lower in hibernation period than other seasons. The total phospholipid, sterol and fatty acid contents differ significantly between seasons. The poly-unsaturated fatty acid, except arachidonic acid content in hibernation period is much lower than that during other seasons. The sterol content is also the lowest in this season. The present findings indicate that during hibernation period the membrane is more rigid and the metabolic activity of the animal is slow because of a lower level of various functionally important enzyme activities. Part of this work was presented at the 13th International Union of Biochefstry Congress, held at Amsterdam in August 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号