首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
12-Ketochenodeoxycholic acid, an essential intermediate in the synthesis of chenodeoxycholic acid, has been enzymatically prepared from dehydrocholic acid. The specific reduction of dehydrocholic with NADH was catalysed by 3α-hydroxysteroid dehydrogenase (3α-hydroxysteroid: NAD(P)+ oxidoreductase, EC 1.1.1.50) and 7α-hydroxysteroid dehydrogenase (7α-hydroxysteroid:NAD+ 7-oxidoreductase, EC 1.1.1.159). Cofactor regeneration was obtained through the formate dehydrogenase (formate:NAD+ oxidoreductase, EC 1.2.1.2) catalysed oxidation of formate. Complete transformation of dehydrocholic acid to the 12-keto derivative was achieved with a coenzyme turnover number up to 1200. No steroid by-products were detected by high performance liquid chromatography and thin layer chromatography. The process yielded 9 g product l?1 in 66–84 h. The high purity of the enzymatically prepared 12-ketochenodeoxycholic acid should drastically reduce the formation of the toxic by-product lithocholic acid, which occurs in the synthesis of chenodeoxycholic acid when using chemical methods alone.  相似文献   

2.
Enzymatic studies have been performed on a local strain of Aspergillus niger to find a correlation with citric acid accumulation. The activity of aconitase [aconitate hydratase, citrate(isocitrate) hydrolyase, EC 4.2.1.3] and isocitrate dehydrogenase (NADP+) [threo-ds-isocitrate:NADP+ oxidoreductase (decarboxylating) EC 1.1.1.42] decreased after 4 days whereas that of citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO?acetylCoA), EC 4.1.3.7] did so after 8 days, when citric acid accumulation in the medium reached a maximum (45.9 mg ml?1). In vitro studies with mycelial cell-free extracts demonstrated inhibition of citrate synthase activity by sodium azide and potassium ferricyanide on both the 4th and 8th days. Aconitase was inhibited by sodium arsenate, sodium fluoride, iodoacetic acid and potassium ferricyanide only on the 4th day. Isocitrate dehydrogenase (NADP+) activity on the 4th and 8th days was inhibited by iodoacetic acid but was stimulated by potassium ferricyanide. The possible existence of isozyme species of these enzymes is discussed.  相似文献   

3.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

4.
Glycyrrhetic acid, derived from a main component of liquorice, was converted to 3-ketoglycyrrhetic acid reversibly by rat liver homogenates in the presence of NADPH or NADP+. Glycyrrhetic acid-oxidizing and 3-ketoglycyrrhetic acid-reducing activities were localized in microsomes among the subcellular fractions of rat liver. Glycyrrhetic acid-oxidizing activity and 3-ketoglycyrrhetic acid-reducing activities showed pH optima at 6.3 and 8.5, respectively, and required NADP+ or NAD+ and NADPH or NADH, respectively, indicating that these activities were due to glycyrrhetinate dehydrogenase. The dehydrogenase was not solubilized from the membranes by the treatment with 1 M NaCl or sonication, indicating that the enzyme is a membrane component. The dehydrogenase was solubilized with detergents such as Emalgen 913, Triton X-100 and sodium cholate, and then separated from 3β-hydroxysteroid dehydrogenase (5β-androstan-3β-ol-17-one-oxidizing activity) by butyl-Toyopearl 650 M column chromatography. Partially purified enzyme catalyzed the reversible reaction between glycyrrhetic acid and 3-ketoglycyrrhetic acid, but was inactive toward 3-epiglycyrrhetic acid and other steroids having the 3β-hydroxyl group. The enzyme required NADP+ and NADPH for the highest activities of oxidation and reduction, respectively, and NAD+ and NADH for considerable activities, similar to the results with microsomes. From these results the enzyme is defined as glycyrrhetinate dehydrogenase, being quite different from 3β-hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestine, which is active for both glycyrrhetic acid and steroids having the 3β-hydroxyl group.  相似文献   

5.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

6.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

7.
8.
Steroid metabolism studies have yielded evidence of 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17β-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17β-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from Montipora capitata. More specifically, 17β-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and Tubastrea coccinea (three summers, three winters) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP/ NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17β-HSD and are consistent with the presence of more than one isoform of the enzyme.  相似文献   

9.
In Euglena gracilis, pyruvate:NADP+ oxidoreductase, in addition to the pyruvate dehydrogenase complex, functions for the oxidative decarboxylation of pyruvate in the mitochondria. Furthermore, the 2-oxoglutarate dehydrogenase complex is absent, and instead 2-oxoglutarate decarboxylase is found in the mitochondria. To elucidate the central carbon and energy metabolisms in Euglena under aerobic and anaerobic conditions, physiological significances of these enzymes involved in 2-oxoacid metabolism were examined by gene silencing experiments. The pyruvate dehydrogenase complex was indispensable for aerobic cell growth in a glucose medium, although its activity was less than 1% of that of pyruvate:NADP+ oxidoreductase. In contrast, pyruvate:NADP+ oxidoreductase was only involved in the anaerobic energy metabolism (wax ester fermentation). Aerobic cell growth was almost completely suppressed when the 2-oxoglutarate decarboxylase gene was silenced, suggesting that the tricarboxylic acid cycle is modified in Euglena and 2-oxoglutarate decarboxylase takes the place of the 2-oxoglutarate dehydrogenase complex in the aerobic respiratory metabolism.  相似文献   

10.
Two types of 15-hydroxyprostaglandin dehydrogenase (NAD+ and NADP+ dependent) were demonstrated in bovine mesentric arteries and veins. The 15-hydroxyprostaglandin dehydrogenase activity was found in the high-speed supernatant, suggesting that these enzymes are associated with the cytoplasmic fraction of the blood vessels. The levels of activities of both NAD+- and NADP+-dependent dehydrogenases were similar in mesentric blood vessels. Prostaglandin F was preferred to the prostaglandin E2 as subtrate by both NAD+ and NADP+ dependent enzymes. The presence of 15-hydroxyprostaglandin dehydrogenase in blood vessels may play a siginificant role in the regulation of intracellular levels of prostaglandins of the E and F series in blood vessels.  相似文献   

11.
The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The K m values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.  相似文献   

12.
The cofactor-binding site of the NAD+-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2′- and 3′-hydroxyl groups of the adenosyl ribose ring of NAD+ and repels the 2′-phosphate moiety of NADP+. If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD+ is altered and rendered the enzyme capable of using NADP+. This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2′-phosphate of NADP+. Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP+. The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP+. Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a “closed” cofactor binding site. The cofactor specificity was shifted even further in favor of NADP+, as the mutant ALDH3H1E149T/V178R/I200V uses NADP+ with almost 7-fold higher catalytic efficiency compared to NAD+. Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.  相似文献   

13.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.  相似文献   

14.
Abstract

In this study, 6-phosphogluconate dehydrogenase was covalently immobilized onto the N-2-aminoethyl-3-aminopropyltriethoxysilane (APTES) modified core-shell Fe3O4@SiO2 magnetic nanoparticles (ASMNPs) using glutaraldehyde (GA). Immobilization of 6PGDH on ASMNPs was confirmed using fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The NADP+ conversion ratio, the reusability, thermal, and storage stability of the immobilized 6PGDH were determined and compared with those of the free enzyme. The maximum retention of enzyme activity reached to 96% when the enzyme was immobilized on ASMNPs activated with monomer form of GA. Although the thermal stability of free and immobilized enzymes was similar, at 30?°C, the immobilized 6PGDH showed the improved thermal stability at 40?°C and 50?°C compared with free 6PGDH. While the free 6PGDH only converted 33% of NADP+ in reaction medium upon 480?s, the immobilized 6PGDH performed 56% conversion of NADP+ at same time. The immobilized 6PGDH retained 62% of its initial activity up to the fifth cycle and 35% of its initial activity after 22?days of storage at 4?°C.  相似文献   

15.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   

16.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

17.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   

18.
This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD+-dependent dehydrogenases. Specifically, the synthesis of highly substituted N6-linked immobilized NAD+ derivatives is described using a rapid solid-phase modular approach. Other modifications of the N6-linked immobilized NAD+ derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 Å) in an attempt to minimize nonbiospecific interactions. Analysis of the N6-linked NAD+ derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S6-linked immobilized NAD+ derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart -lactate dehydrogenase ( -LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. -phenylalanine dehydrogenase ( -PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and -phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD+-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S6-linked immobilized cofactor derivatives than for the new N6-linked derivatives. In contrast, the NAD+-dependent phenylalanine dehydrogenase showed no affinity for the S6-linked immobilized NAD+ derivative, but was locked-on strongly to the N6-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N6-linked immobilized NADP+ derivative in the presence of -phenylalanine. This differential locking-on of NAD+-dependent dehydrogenases to N6-linked and S6-linked immobilized NAD+ derivatives cannot be explained in terms of final accessible substitutions levels, but suggests fundamental differences in affinity of the three test enzymes for NAD+ immobilized via N6-linkage as compared to thiol-linkage.  相似文献   

19.
NAD+ has been covalently attached to dextrans having different molecular weights to give various NAD+ densities (mol NAD+ per mol d-glucosyl residue). The effects of molecular weight of dextran and of NAD+ density on the coenzyme activity of the dextran-bound NAD+ derivatives were examined for the reactions catalysed by alcohol dehydrogenase (alcohol: NAD+ oxidoreductase, EC 1.1.1.1) and lactate dehydrogenase (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27). The molecular weight of dextran had little effect on coenzyme activity in the range 10 000 to 500 000. At low NAD+ density (<0.05 mol NAD+/mol d-glucosyl residue), the coenzyme activities of the derivatives were relatively low, but higher densities had little effect on the activity. Dextran-bound NAD+ derivatives were twice as stable as free NAD+.  相似文献   

20.
Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an α-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12α-hydroxyandrosta-1,4,6-triene-3,17-dione and 12β-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号