首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gibberellin insensitivity genes, Rht1 and Rht2, reducedepidermal cell lengths in leaves of isogenic lines of field-and laboratory-grown wheat (Triticum aestivum L.). Rht dosagesof zero (wild type), two (semi-dwarf) and four alleles (doubledwarf) had a linear negative effect on cell length in flag leavesof field-grown plants, and in the sheaths and blades of leafnumber 1 in laboratory grown plants. Decrease in cell length,rather than reduced cell number, accounted for most to all ofthe reduction in blade and sheath length. In sheaths, cell widthincreased with Rht dosage, but not sufficiently to compensatefor decreased length in determining average projected surfacearea. Rates of extension of leaf number 1 in laboratory-grownplants were negatively and linearly correlated with Rht dosage.Maximal growth rate was maintained longer in wild type thanin double dwarf, but the total duration of measurable extensionin leaf number 1 was not affected by Rht dosage. Cell size, elongation, Rht, wheat, Triticum aestivum L  相似文献   

2.
The effects of low temperature and the Rht3 dwarfing gene onthe dynamics of cell extension in leaf 2 of wheat were examinedin relation to gibberellin (GA) content and GA-responsivenessof the extension zone. Leaf 2 of wild-type (rht3) wheat closelyresembled that of the Rht3 dwarf mutant when seedlings weregrown at 10C. The maximum relative elemental growth rate (REGR)within the extension zone in both genotypes was lower at 10Cthan at 20C, but the position with respect to the leaf basewas unaffected by temperature. The size of the extension zoneand epidermal cell lengths were similar in both genotypes at10C. Growth at 20C, instead of 10C, increased the lengthof the extension zone beyond the point of maximum REGR in thewild type, but not in the Rht3 mutant. Increasing temperatureresulted in longer epidermal cells in the wild type. Treatingwild-type plants at 10C with gibberellic acid (GA3) also increasedthe length of the extension zone, but the Rht3 mutant was GA-non-responsive.However, the concentrations of endogenous GA1 and GA3 remainedsimilar across the extension zone of wild-type plants grownat both temperatures, despite large differences in leaf growthrates. The period of accelerating REGR as cells enter the extensionzone, and the maximum REGR attained, are apparently not affectedby GA. It is proposed that GA functions as a stimulus for continuedcell extension by preventing cell maturation in the region beyondmaximum REGR and that low temperature increases the sensitivitythreshold for GA action. Key words: Cell extension, gibberellin, Rht3 dwarfing gene, temperature, wheat leaf  相似文献   

3.
The effects of elevated atmospheric CO2, alone or in combinationwith water stress, on stomatal frequency in groundnut (Arachishypogaea (L.) cv. Kadiri-3) were investigated. CO2 exerted significanteffects on stomatal frequency only in irrigated plants. Theeffects of drought on leaf development out weighed the smallereffects of CO2 concentration, although reductions in stomatalfrequency induced by elevated atmo-spheric CO2 were still observed.When stands of groundnut were grown under irrigated conditionswith unrestricted root systems, an increase in atmospheric CO2from 375 to 700 ppmv decreased stomatal frequency on both leafsurfaces by up to 16% in droughted plants, stomatal frequencywas reduced by 8% on the adaxial leaf surface only. Elevatedatmospheric CO2 promoted larger reductions in leaf conductancethan the changes in stomatal frequency, indicating partial stomatalclosure. As a result, the groundnut stands grown at elevatedCO2 utilized the available soil moisture more slowly than thosegrown under ambient CO2, there by extending the growing period.Despite the large variations in cell frequencies induced bydrought, there was no treatment effect on either stomatal indexor the adaxial/abaxial stomatalfrequency ratio. The data suggestthat the effects of future increases in atmospheric CO2 concentrationon stomatal frequency in groundnut are likely to be small, especiallyunder conditions of water stress, but that the combination ofassociated reductions in leaf con-ductance and enhanced assimilationat elevated CO2 will be important in semi-arid regions Key words: Arachis hypogaea L, Leguminosae, groundnu, stomatal frequency, CO2, drought  相似文献   

4.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   

5.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

6.
Two models of the distribution of relative elemental rates ofelongation (RELEL) were tested for the extension zone (EZ) ofthe first foliage leaf of seedling wheat plants, by comparisonto patterns of separation of rings and gyres in the walls ofprotoxylem vessels. One model, containing a defined growth maximumin the basal half of the EZ, is favoured in the literature andwas derived from data published for perennial ryegrass. Theother, containing a flat, broad maximum throughout the regionof the EZ with stomates, was constructed from regressions ofinterstomatal distance against distance along the EZ in thefirst foliage leaf of wheat seedlings. The test strongly favouredthe model with the flat maximum. Although the gibberellic acid(GA) insensitivity alleles Rht1 and Rht2 reduce length of extensionzone (LEZ), leaf extension rate (LER) and final cell and leaflengths, they had no effect on maximum RELEL. Results with aninhibitor of GA synthesis indicated that control of leaf elongationby the control of LEZ may be generalizable as a mechanism bywhich GA controls LER in the grass leaf. Extension zone, elongation, gibberellic acid, Rht, wheat, Triticum aestvum L.  相似文献   

7.
The second leaf of wheat was used as a model system to examinethe effects of the Rht3 dwarfing gene on leaf growth. Comparedto the rht3 wild type, the Rht3allele decreased final leaf length,surface area and dry mass by reducing the maximum growth rates,but without affecting growth duration. Gibberellic acid (GA3)increased final leaf length and maximum growth rate in the rht3wild type, but was without effect on the Rht3 mutant, whichis generally regarded as being non-responsive to gibberellin(GA). Paclobutrazol, an inhibitor of GA biosynthesis, decreasedfinal leaf length and maximum growth rate in the rht3 wild typeto values similar to those in the untreated Rht3 mutant. NeitherGA3 nor paclobutrazol affected the duration of leaf growth.The decrease in leaf length was produced by reduction of celllength rather than cell number. The maximum relative elementalgrowth rate (REGR) for cell extension was essentially the samein all treatments, as was the time between the cells leavingthe meristem and achieving maximum extension rate. The differencesbetween the genotypes and treatments were all almost entirelydue to differences in the time taken from the attainment ofmaximum REGR of cell extension to the cessation of extension.This was reflected in the length of the extension zone, whichwas approximately 6–8 per cent of final leaf length. Theeffects of the Rht3 allele, GA3 and paclobutrazol all appearto be on the processes which promote the cessation of cell elongation. Key words: Cell extension, gibberellin, leaf growth, Rht3 gene, Triticum, wheat  相似文献   

8.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

9.
Willmer, C. M., Wilson, A. B. and Jones, H. G. 1988. Changingresponses of stomata to abscisic acid and CO2 as leaves andplants age.—J. exp. Bot. 39: 401–410. Stomatal conductances were measured in ageing leaves of Commelinacommunis L. as plants developed; stomatal responses to CO2 andabscisic acid (ABA) in epidermal strips of C. communis takenfrom ageing leaves of developing plants and in epidermal stripsfrom the same-aged leaves (the first fully-expanded leaf) ofdeveloping plants were also monitored. Stomatal behaviour wascorrelated with parallel measurements of photosynthesis andleaf ABA concentrations. Stomatal conductance in intact leavesdecreased from a maximum of 0-9 cm s– 1 at full leaf expansionto zero about 30 d later when leaves were very senescent. Conductancesdeclined more slowly with age in unshaded leaves. Photosynthesisof leaf slices also declined with age from a maximum at fullleaf expansion until about 30 d later when no O2 exchange wasdetectable. Exogenously applied ABA (0.1 mol m– 3) didnot affect respiration or photosynthesis. In epidermal stripstaken from ageing leaves the widest stomatal apertures occurredabout 10 d after full leaf expansion (just before floweringbegan) and then decreased with age; this decrease was less dramaticin unshaded leaves. The inhibitory effects of ABA on stomatalopening in epidermal strips decreased as leaves aged and wasgreater in the presence of CO2 than in its absence. When leaveswere almost fully-senescent stomata were still able to open.At this stage, guard cells remained healthy-looking with greenchloroplasts while mesophyll cells were senescing and theirchloroplasts were yellow. Similar data were obtained for stomatain epidermal strips taken from the same-aged leaves of ageingplants. The inhibitory effects of ABA on stomatal opening alsodecreased with plant age. In ageing leaves both free and conjugated ABA concentrationsremained low before increasing dramatically about 30 d afterfull leaf expansion when senescence was well advanced. Concentrationsof free and conjugated ABA remained similar to each other atall times. It is concluded that the restriction of stomatal movements inintact leaves as the leaves and plants age is due mainly toa fall in photosynthetic capacity of the leaves which affectsintracellular CO2 levels rather than to an inherent inabilityof the stomata to function normally. Since stomatal aperturein epidermal strips declines with plant and leaf age and stomatabecome less responsive to ABA (while endogenous leaf ABA levelsremain fairly constant until leaf senescence) it is suggestedthat some signal, other than ABA, is transmitted from the leafor other parts of the plant to the stomata and influences theirbehaviour. Key words: Abscisic acid, CO2, Commelina, leaf age, senescence, stomatal sensitivity  相似文献   

10.
Seedlings of Maranthes corymbosa (Blume) and Eucalyptus tetrodonta(F. Muell) were grown with or without CO2 enrichment (700µmolCO2 mol–1 The response of stomatal conductance (g2) toleaf drying, exogenous absclslc acid and calcium ions was investigatedin M. corymbosa. Reciprocal transfer experiments were also conductedwhereby plants were grown in one treatment and then transferredto the other before g, was measured. Stomatal conductance in M. corymbosa was more sensitive (a greaterpercentage decline in g2 per unit percentage decline in leaffresh weight) to leaf water status under conditions of CO2 enrichmentcompared to ambient conditions. However, the rate of reductionof g2 in response to exogenous abscisic acid was not influencedby CO2 treatment. In contrast, the rate of reduction of g2,in response to exogenous CaCl2 was decreased under conditionsof CO2 enrichment. Reciprocal transfer experiments showed that expo sure to CO2enrichment results in a short-term, reversible decline in g2,as a result of decreased stomatal aperture and a long-term,irreversible decline in g2 as a result of a decreased stomataldensity. Seedlings of E. tetrodonta were used to investigate the responseof g2 to light flux density, leaf-to-air vapour pressure difference(LAVPD), leaf internal CO2 concentration (C1 and temperature.Reciprocal transfer experiments were also conducted. CO2 enrichmentdid not influence the pattern or sensitivity of response ofg to LAVPD and C in E. tetrodonta. In contrast, the slope ofthe response of g2, to temperature decreased for trees grownunder elevated [CO2]a conditions and the equilibrium g2 attainedat saturating light was also decreased for plants grown underelevated [CO2a. conditions. Key words: Stomata, elevated CO2, tropical trees  相似文献   

11.
Over two seasons in c. 600 ppm CO2, oak had lower stomatal conductancein CO2-enriched compared to amblent air. Beech showed no responseto CO2 concentration on sunny days. Mirroring this pattern,exposure to elevated CO2 reduced whole-shoot hydraulic conductanceper unit leaf area in oak, but not in beech. Key words: Climate change, Fagaceae, gas exchange, trees, water relations  相似文献   

12.
Physiological responses to water stress (drought) have beeninvestigated in Umbilicus rupestris (wall pennywort) by comparingcontrol (well-watered) and draughted plants with respect to(i) diurnal fluctuations in the acid content of the leaves,(ii) CO2 exchange patterns and (iii) stomatal conductance. Controlplants show no diurnal fluctuations in acid content, whereasafter 6 d of drought a clear CAM-type pattern (nocturnal acidificationfollowed by deacidification in the light) is observed. In controlplants, the CO2 exchange pattern over a 24 h period is of atypical C-3 ‘square-wave’ type, with extensive CO2uptake in the light and CO2 output in the dark. In droughtedplants the day-time CO2 uptake is confined to a morning ‘burst’,whilst night-time CO2 output is markedly reduced. There is howeverno net noctural uptake of CO2. In control plants, stomatal conductanceis high during the day (especially in the first half of theday) falling to a low level at the onset of darkness, and thenrising slowly through the remainder of the night. In droughtedplants, stomatal conductance is very low, except that thereis morning ‘burst’ of high conductance and a periodduring the night when conductance is higher than in controlplants. These results are discussed in relation to the response of U.rupestris to drought both in laboratory and in field conditions. Umbilicus rupestris, wall pennywort, CO2 exchange, Crassulacean acid metabolism, drought, stomatal conductance, water stress  相似文献   

13.
Previous work has shown that stomata respond directly to light,but it was not clear whether the only additional response isthrough CO2, or whether some other metabolite is involved inthis response. Gas exchange experiments were done with normallypositioned and inverted leaves of Hedera helix to investigatethis problem. The macroscopic optical properties of the leavesand their anatomical structure were also studied. These experimentssnowed that there is no need to postulate the existence of amessenger other than CO2 to explain the indirect response ofstomata to light. The experiments also showed that leaf inversionaffects both stomatal conductance and photosynthesis, and highlightthe difficulties involved in the interpretation of the effectof leaf inversion on stomata when stomatal conductance measurementsare not done concurrently with measurements of CO2 flux densityand intercellular CO2 molar fraction Key words: Hedera helix, ivy, gas exchange, leaf inversion, stomatal conductance, light, CO2 flux density, photosynthesis  相似文献   

14.
The carbon balance and changes in leaf structure in Clusia minorL., were investigated in controlled conditions with regardto nitrogen supply and responses to low and high photosyntheticallyactive radiation (PAR). Nitrogen deficiency and high PAR ledto the production of smaller leaves with higher specific leafdry weight (SLDW) and higher leaf water content, but with lowerchlorophyll content. Nitrogen and PAR levels at growth alsoaffected CO2 exchange and leaf area. In – N conditions,total daily net CO2 uptake and leaf area accumulation were slightlyless for high-PAR-grown plants. In contrast, high-PAR-grownplants supplied with nitrogen showed about a 4-fold higher totaldaily CO2 uptake and about twice the total leaf area of low-PAR-grownplants. Although total daily net CO2 uptake of +N plants wasonly slightly higher than –N plants under the low PARlevel, –N plants produced almost three times more leafarea but with lower SLDW. Under well-watered conditions, low-PAR-grownplants showed only CO2 evolution during the night and malicacid levels decreased. However, there was considerable night-timeaccumulation of titratable protons due to day/night changesin citric acid levels. High-PAR-grown plants showed net CO2uptake, malate and citrate accumulation during the dark period.However, most of the CO2 fixed at night probably came from respiratoryCO2. Positive night-time CO2 exchange was readily observed forlow-PAR-grown plants when they were transferred to high PARconditions or when they were submitted to water stress. In plantsgrown in high and low PAR, CAM leads to a substantial increasein daily water use efficiency for water-stressed plants, althoughtotal net CO2 uptake decreased.  相似文献   

15.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

16.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

17.
We have attempted to separate the effects of CO2 and temperaturechange on stomatal density by examining ancient leaf materialof Olea europaea L. The distribution of this species is confinedto a Mediterranean type climate, so that O. europaea leavesof different ages will have formed under similar temperaturesbut different CO2 levels over the last 3000 years. Stomataldensity measurements have been made upon leaves of O. europaeaoriginating from King Tutankhamun's tomb dating from 1327 BC,and have been compared with values obtained from Egyptian O.europaea material dating from pre-332 BC, 1818 and 1978 AD.Together, the four dates provide a record of how the plant hasresponded to increases in atmospheric CO2 concentration duringthat time. The results demonstrate that in accordance with similarstudies examining the stomatal density response of plants overthree time scales (hundreds, thousands and tens of thousandsof years) stomatal density falls as CO2 levels increase. Sincewe have examined a natural system with leaves developing undersimilar environmental temperatures the results confirm observationsfrom experimental studies in which plants were grown under thesame temperature but different CO2 regimes.Copyright 1993, 1999Academic Press Olea europaea, stomatal density, atmospheric CO2, temperature, climate change  相似文献   

18.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

19.
Contrasting effects on the stomatal index (SI), stomatal density,epidermal cell size and number were observed in four chalk grasslandherbs (Sanguisorba minor Scop., Lotus corniculatus L., Anthyllisvulneraria L. and Plantago media L.) following exposure to elevatedcarbon dioxide concentrations (CO2) in controlled environmentgrowth cabinets. SI of S. minor increased for both leaf surfaces,whilst in A. vulneraria and P. media SI decreased on one surfaceonly. In L. corniculatus , no differences in SI were observedas epidermal cell density changed in parallel with stomataldensity. In L. corniculatus and S. minor stomatal density increasedon both surfaces, whereas in P. media it decreased; in A. vulnerariastomatal density decreased on the abaxial leaf surface alonefollowing exposure to elevated CO2. In the latter three species,SI changed because stomatal density did not change in parallelwith epidermal cell density. The results suggest elevated CO2is either directly or indirectly affecting cell differentiationand thus stomatal initiation in the meristem. In S. minor and P. media leaf growth increased in elevated CO2,because of increased cell expansion of epidermal cells, whereasin L. corniculatus, epidermal cell size decreased and greaterleaf growth was because of an increase in epidermal cell divisions.In A. vulneraria, leaf size did not change, but increased cellexpansion on the adaxial surface suggests CO2 affects leaf surfacesdifferently, either directly or indirectly at the cell differentiationstage or as the leaf grows. These results suggest component species of a plant communitymay differ in their response to elevated CO2. Predicting theeffect of environmental change is therefore difficult.Copyright1994, 1999 Academic Press Elevated CO2, Sanguisorba minor (salad burnet), Lotus corniculatus (birdsfoot trefoil), Anthyllis vulneraria (kidney vetch), Plantago media (hoary plantain), stomatal index, stomatal density, epidermal cell size  相似文献   

20.
Mature second leaves of Lolium perenne L. cv. Vigor, were sampledin a spring and summer regrowth period. Effects of CO2enrichmentand increased air temperature on stomatal density, stomatalindex, guard cell length, epidermal cell density, epidermalcell length and mesophyll cell area were examined for differentpositions on the leaf and seasons of growth. Leaf stomatal density was smaller in spring but greater in summerin elevated CO2and higher in both seasons in elevated temperatureand in elevated CO2xtemperature relative to the respective controls.In spring, leaf stomatal index was reduced in elevated CO2butin summer it varied with position on the leaf. In elevated temperature,stomatal index in both seasons was lower at the tip/middle ofthe leaf but slightly higher at the base. In elevated CO2xtemperature,stomatal index varied with position on the leaf and betweenseasons. Leaf epidermal cell density was higher in all treatmentsrelative to controls except in elevated CO2(spring) and elevatedCO2xtemperature (summer), it was reduced at the leaf base. Inall treatments, stomatal density and epidermal cell densitydeclined from leaf tip to base, whilst guard cell length showedan inverse relationship, increasing towards the base. Leaf epidermalcell length and mesophyll cell area increased in elevated CO2inspring and decreased in summer. In elevated CO2xtemperatureleaf epidermal cell length remained unaltered in spring comparedto the control but decreased in summer. Stomatal conductancewas lower in all treatments except in summer in elevated CO2itwas higher than in the ambient CO2. These contrasting responses in anatomy to elevated CO2and temperatureprovide information that might account for differences in seasonalleaf area development observed in L. perenne under the sameconditions. Lolium perenne ; perennial ryegrass; elevated CO2and temperature; stomatal density; stomatal index; cell size  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号