首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Ablation of the low-affinity receptor subunit for leukemia inhibitory factor (LIFR) causes multi-systemic defects in the late gestation fetus. Because corticosterone is known to have a broad range of effects and LIF function has been associated with the hypothalamo-pituitary-adrenal axis, this study was designed to determine the role for LIFR in the fetus when exposed to the elevated maternal glucocorticoid levels of late gestation. Uncovering a requirement for LIFR in appropriate glucocorticoid response will further understanding of control of glucocorticoid function.

Methods

Maternal adrenalectomy or RU486 administration were used to determine the impact of the maternal glucocorticoid surge on fetal development in the absence of LIFR. The mice were analyzed by a variety of histological techniques including immunolabeling and staining techniques (hematoxylin and eosin, Alizarin red S and alcian blue). Plasma corticosterone was assayed using radioimmunoassay.

Results

Maternal adrenalectomy does not improve the prognosis for LIFR null pups and exacerbates the effects of LIFR loss. RU486 noticeably improves many of the tissues affected by LIFR loss: bone density, skeletal muscle integrity and glial cell formation. LIFR null pups exposed during late gestation to RU486 in utero survive natural delivery, unlike LIFR null pups from untreated litters. But RU486 treated LIFR null pups succumb within the first day after birth, presumably due to neural deficit resulting in an inability to suckle.

Conclusion

LIFR plays an integral role in modulating the fetal response to elevated maternal glucocorticoids during late gestation. This role is likely to be mediated through the glucocorticoid receptor and has implications for adult homeostasis as a direct tie between immune, neural and hormone function.  相似文献   

2.
3.
It is well documented that 17-estradiol (E2) exerts a cardiovascular protective effect. A possible role of E2 in the regulation of endothelin-1 (ET-1) production has been reported. However, the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E2 may alter angiotensin II (Ang II)-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with E2, then stimulated with Ang II, and [3H]thymidine incorporation and ET-1 gene expression were examined. The effect of E2 on Ang-II-induced extracellular signal-regulated kinase (ERK) phosphorylation was tested to elucidate the intracellular mechanism of E2 in proliferation and ET-1 gene expression. Ang II increased DNA synthesis which was inhibited with E2 (1–100 nM). E2, but not 17-estradiol, inhibited the Ang-II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by coincubation with the estrogen receptor antagonist ICl 182,780 (1 µM). E2 also inhibited Ang-II-increased intracellular reactive oxygen species (ROS) as measured by a redox-sensitive fluorescent dye, 2,7-dichlorofluorescin diacetate, and ERK phosphorylation. Furthermore, E2 and antioxidants, such as N-acetyl cysteine and diphenylene iodonium, decreased Ang-II-induced cell proliferation, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1-mediated reporter activity. In summary, our results suggest that E2 inhibits Ang-II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.  相似文献   

4.
5.
We investigated the expression of HBD-1 and -2 in vaginal epithelial cells treated with lipopolysaccharide (LPS) and the effects on HBD-2 expressions by 17β-estradiol and progesterone. Primary vaginal epithelial cells were isolated from a segment of normal anterior vaginal wall obtained during vaginoplasty and were cultured in keratinocyte growth medium and were allowed to undergo their 3rd passage. Expression of HBD-1 and -2 by different stimuli using LPS 0.5 μg/ml, 17β-estradiol 2 nM and progesterone 1 μM was measured by RT-PCR, ELISA and real-time RT-PCR, respectively. HBD-1 was produced constitutively in vaginal epithelial cells and the production of HBD-1 was not influenced by LPS, 17β-estradiol and progesterone, but the production of HBD-2 was increased inducibly by LPS. 17β-Estradiol and progesterone did not change the production of HBD-2 in normal state, but 17β-estradiol increased the production of HBD-2 and progesterone suppressed the production of HBD-2 under the circumstances with infection. The HBD-2 plays an important role at innate host defense on genitourinary tract. The lacks of estrogen during menopause or uses of a progesterone-based oral contraceptive in sexually active women may influence production of HBD-2 in vaginal epithelium and may increase susceptibility to bacterial vaginitis or recurrent UTI.  相似文献   

6.
Epithelial cells from mammary gland tissue that are cultured in vitro are able to maintain specific functions of this gland, such as cellular differentiation and milk protein synthesis. These characteristics make these cells a useful model to study mammary gland physiology, development and differentiation; they can also be used for production of exogenous proteins of pharmaceutical interest. Bovine mammary epithelial cells were cultured in vitro after isolation from mammary gland tissue of animals at different stages of development. The cells were plated on Petri dishes and isolated from fibroblasts using saline/EDTA treatment, followed by trypsinization. Cells isolated on plastic were capable of differentiating into alveolus-like structures; however, only cells derived from non-pregnant and non-lactating animals expressed β-casein. Real-time qPCR and epifluorescence microscopy analyses revealed that alveolus-like structures were competent at expressing Emerald green fluorescent protein (EmGFP) driven by the β-casein promoter, independent of β-casein expression.  相似文献   

7.
Regucalcin is involved in maintenance of calcium homeostasis due to the activation of Ca2+ pumping enzymes in the plasma membrane. It has a suppressive effect in cell proliferation, DNA and RNA synthesis, and may be associated with the abnormal cell division on tumor tissues. On the other hand both estrogens and Ca2+ are implicated in breast and prostate cancer but there are no studies focused on the expression of regucalcin in rat mammary gland or prostate. Furthermore, it is known that the expression of regucalcin in rat liver and kidney is regulated by 17β-estradiol (E2). The aim of this study is to analyze if regucalcin is expressed in rat mammary gland and prostate and if it is regulated by E2 in these tissues. We demonstrated for the first time that regucalcin mRNA and protein are present in rat mammary gland and prostate by in situ hybridization and immunohistochemistry, respectively. Furthermore, we show by Real-time PCR that E2 down-regulates regucalcin expression in rat mammary gland and prostate.  相似文献   

8.
9.
10.
11.
ATP-sensitive potassium channels (KATP) regulate electrical activity and insulin secretion in pancreatic β-cells. When glucose concentration increases, the [ATP]/[ADP] ratio rises closing KATP channels, and the membrane potential depolarizes, triggering insulin secretion. This pivotal role of KATP channels is used not only by glucose but also by neurotransmitters, hormones and other physiological agents to modulate electrical and secretory β-cell response.In recent years, it has been demonstrated that estrogens and estrogen receptors are involved in glucose homeostasis, and that they can modulate the electrical activity and insulin secretion of pancreatic β-cells. The hormone 17β-estradiol (E2), at physiological levels, is implicated in maintaining normal insulin sensitivity for β-cell function. Long term exposure to E2 increases insulin content, insulin gene expression and insulin release via the estrogen receptor α (ERα), while rapid responses to E2 can regulate KATP channels increasing cGMP levels through the estrogen receptor β (ERβ) and type A guanylate cyclase receptor (GC-A). This review summarizes the main actions of 17β-estradiol on KATP channels and the subsequent insulin release in pancreatic β-cells.  相似文献   

12.
13.

Background

During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.

Method

Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.

Results

PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.

Conclusion

Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma.  相似文献   

14.
15.
16.
Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β‐estradiol (E2) treatment is sufficient to inhibit cell proliferation and cell migration in human colon cancer cells. Up‐regulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. In the present study, we treated human LoVo colon cancer cells with E2 to explore whether E2 down‐regulates cell proliferation and migration, and to identify the precise molecular and cellular mechanisms behind the down‐regulatory responses. Here, we found that E2 treatment decreased cell proliferation and cell cycle‐regulating factors such as cyclin A, cyclin D1 and cyclin E. At the same time, E2 significantly inhibited cell migration and migration‐related factors such as uPA, tPA, MMP‐2, and MMP‐9. However, E2 treatment showed no effects on upregulating expression of plasminogen activator inhibitor‐1 (PAI‐1), tissue inhibitor of metalloproteinase‐1, ‐2, ‐3, and ‐4 (TIMP‐1, ‐2, ‐3, and ‐4). After administration of inhibitors including QNZ (NFκB inhibitor), LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor) or SP600125 (JNK1/2 inhibitor), E2‐downregulated cell migration and expression of MMP‐2 and MMP‐9 in LoVo cells is markedly inhibited only by p38 MAPK inhibitors, SB203580. Application of specific target gene siRNA (ERα, ERβ, p38α, and p38β) to LoVo cells further confirmed that p38 MAPK mediates E2/ERs inhibition of MMP‐2 and ‐9 expression and cell motility in LoVo cells. Collectively, these results suggest that E2 treatment down‐regulates cell proliferation by modulating the expression of cyclin A, cyclin D1 and cyclin E. E2 treatment simultaneously impaired cell migration by inhibiting the expression of uPA, tPA, MMP‐2, and MMP‐9 through E2/ERs ? p38α MAPK signaling pathway in human LoVo colon cancer cells. J. Cell. Physiol. 227: 3648–3660, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Mammary tumors were promoted in male rats of the Wistar WAG strain by continuous and simultaneous administration of 17ß-estradiol and progesterone. Tumor induction and growth were dependent on estradiol and on progesterone. Their histological features were comparable with those of human breast cancers. Hormone receptors were present in tumor cells. Estradiol receptor was found in 95% of them, at a higher level in nuclei than in cytosol. Progesterone receptor was present in 75% of tumors. In all cases, the level of androgen receptor was low.  相似文献   

19.
TNF and IL-1 each can activate NF-B and induce gene expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix enzyme which can provide critical protection against hyperoxic lung injury. The regulation of MnSOD gene expression is not well understood. Since redox status can modulate NF-B and potential B site(s) exist in the MnSOD promoter, the effect of thiols (including NAC, DTT and 2-ME) on TNF and IL-1 induced activation of NF-B and MnSOD gene expression was investigated. Activation of NF-kB and increased MnSOD expression were potentiated by thiol reducing agents. In contrast, thiol oxidizing or alkylating agents inhibited both NF-B activation and elevated MnSOD expression in response to TNF or IL-1. Since protease inhibitors TPCK and TLCK can inhibit NF-B activation, we also investigated the effect of these compounds on MnSOD expression and NF-B activation. TPCK and TLCK each inhibited MnSOD gene expression and NF-B activation. Since the MnSOD promoter also contains anAP-1 binding site, the effect of thiols and thiol modifying agents on AP-1 activation was investigated. Thiols had no consistent effect onAP-1 activation. Likewise, some of the thiol modifying compounds inhibited AP-1 activation by TNF or IL-1, whereas others did not. Since diverse agents had similar effects on activation of NF-B and MnSOD gene expression, we have demonstrated that activation of NF-B and MnSOD gene expression are closely associated and that reduced sulfhydryl groups are required for cytokine mediation of both processes.Abbreviations O2 Superoxide radical - H2O2 Hydrogen peroxide - NAC N-acetyl L-cysteine - DTT Dithiothreitol - 2-ME 2-Mercaptoethanol - MnSOD Manganese superoxide dismutase - NF-B Nuclear factor kappa B - AP-1 Activator protein-1 - NBT Nitroblue tetrazolium - CAT Chloramphenicol acetyltransferase - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - TLCK Na-p-tosyl-L-lysine chloromethyl ketone - TAME N--p-tosyl-L-arginine methyl ester - NEM N-ethyl maleimide - DEM Diethyl maleate - CDNB 1-chloro-2,4-dinitrobenzene - DTTOX Oxidized dithiothreitol  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号