首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct electron transfer of immobilized horseradish peroxidase on gold colloid and its application as a biosensor were investigated by using electrochemical methods. The Au colloids were associated with a cysteamine monolayer on the gold electrode surface. A pair of redox peaks attributed to the direct redox reaction of horseradish peroxidase (HRP) were observed at the HRP/Au colloid/cysteamine-modified electrode in 0.1 M phosphate buffer (pH 7.0). The surface coverage of HRP immobilized on Au colloid was about 7.6 x 10(-10) mol/cm(2). The sensor displayed an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The calibration range of H(2)O(2) was 1. 4 microM to 9.2 mM with good linear relation from 1.4 microM to 2.8 mM. A detection limit of 0.58 microM was estimated at a signal-to-noise ratio of 3. The sensor showed good reproducibility for the determination of H(2)O(2). The variation coefficients were 3. 1 and 3.9% (n = 10) at 46 microM and 2.8 mM H(2)O(2), respectively. The response showed a Michaelis-Menten behavior at higher H(2)O(2) concentrations. The K(app)(M) value for the H(2)O(2) sensor was found to be 2.3 mM.  相似文献   

2.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

3.
4.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

5.
Tissue factor expression on the surface of endothelial cells can be induced by tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) in a synergistic manner. We have investigated the role of the two different TNF receptors for this synergy. Firstly, stimulation of the 60 kDa TNF receptor (TNFR60) by a mutant of TNF specific for TNFR60 induced responses comparable to wild-type TNF. In contrast, stimulation of TNFR80 by a TNFR80-specific TNF mutein did not result in enhancement of tissue factor expression even in the presence of a suboptimal TNFR60 triggering. Secondly, we tested neutralizing TNF receptor antibodies for inhibition of tissue factor synthesis induced by VEGF and TNF. A TNFR60-specific antibody inhibited tissue factor production over a broad range of TNF concentrations, indicating an essential role of TNFR60 in the TNF/VEGF synergy. In contrast, blocking of TNF binding to TNFR80 strongly inhibited TNF-induced tissue factor expression at low, but less pronounced at high, TNF concentrations. In conclusion, these data are in agreement with a model in which TNFR80 participates in the synergy between VEGF and low concentrations of soluble TNF by passing the ligand to the signalling TNFR60.  相似文献   

6.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

7.
Characterization of the receptors for vascular endothelial growth factor   总被引:31,自引:0,他引:31  
Vascular endothelial growth factor (vEGF) is a recently discovered mitogen for endothelial cells. It is also a potent angiogenic factor. We have characterized the vEGF receptors of endothelial cells using both binding and cross-linking techniques. Scatchard analysis of equilibrium binding experiments revealed two types of high-affinity binding sites on the cell surfaces of bovine endothelial cells. One of the sites has a dissociation constant of 10(-12) M and is present at a density of 3 x 10(3) receptors/cell. The other has a dissociation constant of 10(-11) M, with 4 x 10(4) receptors/cell. A high molecular weight complex containing 125I-vEGF is formed when 125I-vEGF is cross-linked to bovine endothelial cells. This complex has an apparent molecular mass of 225 kDa. Two other faintly labeled complexes with apparent molecular masses of 170 and 195 kDa also are detected. Reduction in the presence of dithiothreitol causes a substantial increase in the labeling intensity of the 170- and 195-kDa complexes, suggesting that these complexes are derived from the 225-kDa complex by reduction of disulfide bonds. The labeling of the vEGF receptors was inhibited by an excess of unlabeled vEGF but not by high concentrations of several other growth factors. Suramin and protamine, as well as several species of lectins, inhibited the binding. The expression of functional vEGF receptors was inhibited when the cells were preincubated with tunicamycin, indicating that glycosylation of the receptor is important for the expression of functional vEGF receptors. Pretreatment with swainsonine on the other hand, did not prevent formation of functional receptors. However, the mass of the 225-kDa complex is decreased by 20 kDa when 125I-vEGF is cross-linked to swainsonine-treated endothelial cells.  相似文献   

8.
血管内皮细胞生长因子(vascular endothelial growth factor,VEGF或VEGF-A),又称为血管通透因子(vascular permeable factor,VPF)是一种具有多种功能的生物大分子,它是分泌性糖蛋白生长因子超家族中的一员.VEGF主要通过两个高亲和力的酪氨酸激酶受体来传递各种信号:VEGF受体1和2(VEGFR1,VEGFR2),从而引起细胞的多种生理反应.在胚胎时期,VEGF可以促进血管内皮细胞的增殖、迁移、管状形成和提高内皮细胞的存活率,对于血管新生和发育十分关键;而在成体时期,VEGF则主要参与正常血管结构的维持,并调节生理和病理性血管新生.近几年来的临床试验表明,使用多种阻断VEGF作用的抑制剂能有效促进肿瘤血管的退化和减小肿瘤的体积,但是同时在部分病人中也观察到了多方面的副作用.这些结果显示,VEGF也具有非血管新生方面的重要功能.因此,在研制基于拮抗VEGF作用的抗癌药物时,这些功能更不容忽视.研究表明,在成体的小肠、胰岛、甲状腺、肾脏和肝脏等器官组织中,VEGF都发挥着十分重要的作用,如果VEGF水平降低,这些器官组织的毛细血管网状结构将部分退化.VEGF还可以促进骨髓形成、组织修复与再生、促进卵巢囊泡成熟,并且参与血栓、炎症反应和缺氧缺血的病理过程.本文主要对VEGF在血管新生之外的功能及其分子机制进行了简要探讨.  相似文献   

9.
Wang YQ  Sun FY 《生理科学进展》2007,38(3):202-207
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种重要的血管发育调节因子,最早发现于肿瘤细胞。上世纪90年代,人们发现VEGF在神经细胞上也有广泛表达,并具有神经细胞保护作用。此外,VEGF显著促进成年哺乳动物结构性神经元再生区(constitutive neurogenic regions)和非神经元再生区(non-neurogenic regions)的神经元再生/更新(neurogenesis/regenera-tion),显示了VEGF在神经损伤性及退行性疾病治疗中的潜在意义。本文着重讨论VEGF在脑缺血损伤中的神经保护(neuroprotection)和神经修复(neural repair)及其细胞和分子机制研究进展。  相似文献   

10.
Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors.  相似文献   

11.
Signaling via vascular endothelial growth factor receptors   总被引:37,自引:0,他引:37  
Angiogenesis, or development of blood vessels from preexisting vasculature, has important functions under both normal and pathophysiological conditions. Vascular endothelial growth factor receptors 1-3, also known as flt-1, KDR, and flt-4, are endothelial cell-specific receptor tyrosine kinases which serve as key mediators of the angiogenic responses. The review focuses on the signaling pathways that are initiated from these receptors and the recently identified VEGF coreceptor neuroplilin-1.  相似文献   

12.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

13.
Conventional immunosuppressive drugs have been used effectively to prevent immunologic rejection in organ transplantation. Individuals taking these drugs are at risk, however, for the development and recurrence of cancer. In the present study we show that the new immunosuppressive drug rapamycin (RAPA) may reduce the risk of cancer development while simultaneously providing effective immunosuppression. Experimentally, RAPA inhibited metastatic tumor growth and angiogenesis in in vivo mouse models. In addition, normal immunosuppressive doses of RAPA effectively controlled the growth of established tumors. In contrast, the most widely recognized immunosuppressive drug, cyclosporine, promoted tumor growth. From a mechanistic perspective, RAPA showed antiangiogenic activities linked to a decrease in production of vascular endothelial growth factor (VEGF) and to a markedly inhibited response of vascular endothelial cells to stimulation by VEGF. Thus, the use of RAPA, instead of cyclosporine, may reduce the chance of recurrent or de novo cancer in high-risk transplant patients.  相似文献   

14.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

15.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are important proangiogenic factors in tumor procession. The autocrine and paracrine bFGF and the VEGF in tumor tissue can promote tumor angiogenesis, tumor growth, and metastasis. A VEGF/bFGF Complex Peptide (VBP3) was designed on the basis of epitope peptides from both VEGF and bFGF to elicit in vivo production of anti‐bFGF and anti‐VEGF antibodies. In this study, we reported on the production of recombinant VBP3 using high cell density fermentation. Fed‐batch fermentation for recombinant VBP3 production was conducted, and the production procedure was optimized in a 10‐L fermentor. The fraction of soluble VBP3 protein obtained reached 78% of total recombinant protein output under fed‐batch fermentation. Purified recombinant VBP3 could inhibit tumor cell proliferation in vitro and stimulate C57BL/6 mice to produce high titer anti‐VEGF and anti‐bFGF antibodies in vivo. A melanoma‐grafted mouse model and an immunohistochemistry assay showed that tumor growth and tumor angiogenesis were significantly inhibited in VBP3‐vaccinated mice. These results demonstrated that soluble recombinant VBP3 could be produced by large‐scale fermentation, and the product, with good immunogenicity, elicited production of high‐titer anti‐bFGF and anti‐VEGF antibodies, which could be used as a therapeutic tumor vaccine to inhibit tumor angiogenesis and tumor growth. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:194–203, 2015  相似文献   

16.
The Kruppel-like factor KLF2 was recently identified as a novel regulator of endothelial pro-inflammatory and pro-thrombotic function. Here it is shown that overexpression of KLF2 potently inhibits vascular permeability factor/vascular endothelial growth factor (VEGF-A)-mediated angiogenesis and tissue edema in the nude ear mouse model of angiogenesis. In vitro, KLF2 expression retards VEGF-mediated calcium flux, proliferation and induction of pro-inflammatory factors in endothelial cells. This effect is due to a potent inhibition of VEGFR2/KDR expression and promoter activity. These observations identify KLF2 as a regulator of VEGFR2/KDR and provide a foundation for novel approaches to regulate angiogenesis.  相似文献   

17.
Although M-CSF has been used for myelosuppression due to chemotherapy in patients with solid tumors, the effect of exogenous M-CSF on tumor angiogenesis has not been studied. In this study we showed that M-CSF has the ability to accelerate solid tumor growth by enhancing angiogenesis with a novel mechanism. M-CSF accelerated intratumoral vessel density in tumors inoculated into mice, although it did not accelerate the proliferation of malignant cells and cultured endothelial cells in vitro. In both the absence and the presence of tumors, M-CSF significantly increased the circulating cells that displayed phenotypic characteristics of endothelial progenitor cells in mice. Moreover, M-CSF treatment induced the systemic elevation of vascular endothelial growth factor (VEGF). VEGFR-2 kinase inhibitor significantly impaired the effect of M-CSF on tumor growth. In vivo, M-CSF increased VEGF mRNA expression in skeletal muscles. Even after treatment with carageenan and anti-CD11b mAb in mice, M-CSF increased VEGF production in skeletal muscles, suggesting that systemic VEGF elevation was attributed to skeletal muscle VEGF production. In vitro, M-CSF increased VEGF production and activated the Akt signaling pathway in C2C12 myotubes. These results suggest that M-CSF promotes tumor growth by increasing endothelial progenitor cells and activating angiogenesis, and the effects of M-CSF are largely based on the induction of systemic VEGF from skeletal muscles.  相似文献   

18.
An endothelial cell-derived growth factor   总被引:19,自引:3,他引:16       下载免费PDF全文
Cell-free plasma-derived serum (PDS) is deficient in the platelet- derived growth factor and will not support the growth of 3T3 cells, fibroblasts, or smooth muscle cells. However, when PDS-containing medium is preincubated with endothelial cells, the medium becomes modified so that it will support growth. The activity produced by the endothelial cells results from a polypeptide of 10,000 to 30,000 daltons which has several features that differ from those of the platelet-derived growth factor, including heat instability and lack of adsorption to CM Sephadex.  相似文献   

19.
血管内皮生长因子家族及其受体与肿瘤血管生成研究进展   总被引:7,自引:0,他引:7  
陈珊  金伟  闵平  陆核 《生命科学》2004,16(1):19-23
血管内皮生长因子(vascular endothelial growth factor,VEGF),又名血管通透性因子(vascular permeability factor,VPF)是重要的血管生成正性调节因子,是目前抗癌治疗的研究靶点之一。现已发现的VEGF家族成员包括VEGF—A、VEGF—B、VEGF—C、VEGF—D、VEGF—E和胎盘生长因子(placenta growth factor,PLGF)。VEGF的受体有VEGFR—1(fit—1)、VEGFR-2(flk-1/KDR)、VEGFR-3(fit-4)、neuropilin(NPR1/NPR2)。该家族的成员可以选择性地增强血管和/或淋巴管内皮细胞的有丝分裂,刺激内皮细胞增殖并促进血管生成,提高血管特别是微小血管的通透性,使血浆大分子外渗沉积在血管外的基质中,促进新生毛细血管网的建立,为肿瘤细胞的生长提供营养等。作者对VEGF家族成员及其受体的理化特征、VEGF与肿瘤的关系、VEGF抑制剂的研制作一综述。  相似文献   

20.
Nerve growth factor (NGF) regulates maintenance, survival, and function of not only neuronal cells but also various kinds of non-neuronal cells. Here we clearly demonstrated that mouse aortic endothelial cells (AEC) produced bioactive NGF, and the production was enhanced by a proinflammatory cytokine, interleukin (IL)-1beta. AEC expressed both high affinity (TrkA) and low affinity (p75(NGFR)) receptors for NGF. Exogenously added NGF induced rapid phosphorylation of TrkA tyrosine kinase. Addition of anti-NGF neutralizing antibody resulted in an increase in the proportion of AEC in S and G(2)/M phases and in a hypodiploid range. Since the vascular endothelium plays a pivotal role in inflammatory conditions, these results strongly suggest that NGF, whose production is enhanced at the affected site, may contribute to maintenance, survival, and function of vascular endothelial cells by autocrine and/or paracrine mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号