首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vivo imaging using two-photon microscopy in mice that have been genetically engineered to express fluorescent proteins in specific cell types has significantly broadened our knowledge of physiological and pathological processes in numerous tissues in vivo. In studies of the central nervous system (CNS), there has been a broad application of in vivo imaging in the brain, which has produced a plethora of novel and often unexpected findings about the behavior of cells such as neurons, astrocytes, microglia, under physiological or pathological conditions. However, mostly technical complications have limited the implementation of in vivo imaging in studies of the living mouse spinal cord. In particular, the anatomical proximity of the spinal cord to the lungs and heart generates significant movement artifact that makes imaging the living spinal cord a challenging task. We developed a novel method that overcomes the inherent limitations of spinal cord imaging by stabilizing the spinal column, reducing respiratory-induced movements and thereby facilitating the use of two-photon microscopy to image the mouse spinal cord in vivo. This is achieved by combining a customized spinal stabilization device with a method of deep anesthesia, resulting in a significant reduction of respiratory-induced movements. This video protocol shows how to expose a small area of the living spinal cord that can be maintained under stable physiological conditions over extended periods of time by keeping tissue injury and bleeding to a minimum. Representative raw images acquired in vivo detail in high resolution the close relationship between microglia and the vasculature. A timelapse sequence shows the dynamic behavior of microglial processes in the living mouse spinal cord. Moreover, a continuous scan of the same z-frame demonstrates the outstanding stability that this method can achieve to generate stacks of images and/or timelapse movies that do not require image alignment post-acquisition. Finally, we show how this method can be used to revisit and reimage the same area of the spinal cord at later timepoints, allowing for longitudinal studies of ongoing physiological or pathological processes in vivo.  相似文献   

2.
We provide a protocol that describes imaging of single fluorescently labeled axons in the spinal cord of living mice. This method takes advantage of transgenic mouse lines in which the thy1-promoter drives the expression of variants of the green fluorescent protein in a small percentage (less than 1%) of sensory neurons. As a consequence, single axons can be resolved in the surgically exposed dorsal column using wide-field epifluorescence microscopy. This approach allows direct observation of axonal degeneration and regeneration in mouse models of spinal cord pathology for several hours or repetitively over the course of several days.  相似文献   

3.
The poor response of central axons to transection underlies the bleak prognosis following spinal cord injury. Here, we monitor individual fluorescent axons in the spinal cords of living transgenic mice over several days after spinal injury. We find that within 30 min after trauma, axons die back hundreds of micrometers. This acute form of axonal degeneration is similar in mechanism to the more delayed Wallerian degeneration of the disconnected distal axon, but acute degeneration affects the proximal and distal axon ends equally. In vivo imaging further shows that many axons attempt regeneration within 6-24 h after lesion. This growth response, although robust, seems to fail as a result of the inability of axons to navigate in the proper direction. These results suggest that time-lapse imaging of spinal cord injury may provide a powerful analytical tool for assessing the pathogenesis of spinal cord injury and for evaluating therapies that enhance regeneration.  相似文献   

4.
There is clearly a demand for an experimental platform that enables cell biology to be studied in intact vascularized and innervated tissue in vivo. This platform should allow observations of cells noninvasively and longitudinally at single-cell resolution. For this purpose, we use the anterior chamber of the mouse eye in combination with laser scanning microscopy (LSM). Tissue transplanted to the anterior chamber of the eye is rapidly vascularized, innervated and regains function. After transplantation, LSM through the cornea allows repetitive and noninvasive in vivo imaging at cellular resolution. Morphology, vascularization, cell function and cell survival are monitored longitudinally using fluorescent proteins and dyes. We have used this system to study pancreatic islets, but the platform can easily be adapted for studying a variety of tissues and additional biological parameters. Transplantation to the anterior chamber of the eye takes 25 min, and in vivo imaging 1-5 h, depending on the features monitored.  相似文献   

5.
6.
Summary In the thoracic cord (posterior horn region) of a wild mouse, we have observed a small nerve cell soma completely enveloped by a myelin sheath. The number of myelin lamellae varied between 7 and 12. In one place, the existence of an inner mesoperikaryon could also be shown. The significance of this fortuitous finding has not yet been explained.
Zusammenfassung Im Thorakalmark (Hinterhornbereich) einer Wildmaus wurde ein kleines Nervenzellperikaryon beobachtet, das vollständig von einer Markscheide umhüllt war. Die Zahl der Markscheidenlamellen variierte zwischen 7 und 12. An einer Stelle konnte ein sogenanntes inneres Mesoperikaryon nachgewiesen werden. Die Bedeutung dieses zufällig erhobenen Befundes ist vorerst noch offen.
  相似文献   

7.
Six proteolytic enzymes were assayed for activity in quaking CNS in examining the hypothesis that increased proteolytic activity contributes to the hypomyelination characteristic of this mutant. Cathepsin B-like enzyme, cathepsin D, neutral proteinase, calcium-activated neutral proteinase, prolyl endopeptidase, and diaminopeptidase II were assayed in whole homogenate of brain or spinal cord and each was found to have activity similar to that in normal mice. These results do not support a relationship between proteolysis and the genetic defect and suggest that other factors should be investigated to delineate the pathogenesis of this mutant.  相似文献   

8.
9.
Little is known about the internal mechanics of the in vivo spinal cord during injury. The objective of this study was to develop a method of tracking internal and surface deformation of in vivo rat spinal cord during compression using radiography. Since neural tissue is radio-translucent, radio-opaque markers were injected into the spinal cord.Two tantalum beads (260 µm) were injected into the cord (dorsal and ventral) at C5 of nine anesthetized rats. Four beads were glued to the lateral surface of the cord, caudal and cranial to the injection site. A compression plate was displaced 0.5 mm, 2 mm, and 3 mm into the spinal cord and lateral X-ray images were taken before, during, and after each compression for measuring bead displacements. Potential bead migration was monitored for by comparing displacements of the internal and glued surface beads.Dorsal beads moved significantly more than ventral beads with a range in averages of 0.57–0.71 mm and 0.31–0.35 mm respectively. Bead displacements during 0.5 mm compressions were significantly lower than 2 mm and 3 mm compressions. There was no statistically significant migration of the internal beads.The results indicate the merit of this technique for measuring in vivo spinal cord deformation. The pattern of bead displacements illustrates the complex internal and surface deformations of the spinal cord during transverse compression. This information is needed for validating physical and finite element spinal cord surrogates and to define relationships between loading parameters, internal cord deformation, and biological and functional outcomes.  相似文献   

10.
Propepties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (<2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain.  相似文献   

11.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.7 mm by implementing a new conventional ablation system (NWR-213) and improving the spatial resolution from 120 μm to 65 μm in routine mode. Element images of the spinal cord are provided for the first time and the metalloarchitecture was established using a multimodal atlas approach. Furthermore, the spatial distribution of Rb was mapped for the first time in biological tissue. Metal concentrations were quantified using matrix-matched laboratory standards and normalization of the respective ion intensities to the average (13)C ion intensity of standards and samples as a surrogate of slice thickness. The "butterfly" shape of the central spinal grey matter was visualized in positive contrast by the distributions of Fe, Mn, Cu and Zn and in negative contrast by C and P. Mg, Na, K, S and Rb showed a more homogenous distribution. The concentrations averaged throughout grey matter and white matter were 8 and 4 μg g(-1) of Fe, 3 and 2 μg g(-1) of Cu, 8 and 5 μg g(-1) of Zn, 0.4 and 0.2 μg g(-1) of Mn. The carbon concentration in white matter exceeded that of grey matter by a factor of 1.44. Zn and Cu at 9 and 4 μg g(-1), respectively, were particularly enriched in the laminae I and II, in line with the high synaptic and cellular density there. Surprisingly Zn but not Cu was enriched in the central channel. Rb occurred at 0.3 μg g(-1) with a distribution pattern congruent to that of K. The coefficients of variation were 6%, 5%, 8% and 10% for Fe, Cu, Zn and Mn, respectively, throughout three different animals measured on different days. These MSI analyses of healthy wild type spinal cords demonstrate the suitability of the established techniques for investigating diseased or transgenic states in future imaging studies.  相似文献   

12.
We have used calcium imaging to visualize the spatiotemporal organization of activity generated by in vitro spinal cord preparations of the developing chick embryo and the neonatal mouse. During each episode of spontaneous activity, we found that chick spinal neurons were activated rhythmically and synchronously throughout the transverse extent of the spinal cord. At the onset of a spontaneous episode, optical activity originated in the ventrolateral part of the cord. Back-labeling of spinal interneurons with calcium dyes suggested that this ventrolateral initiation was mediated by activation of a class of interneurons, located dorsomedial to the motor nucleus, that receive direct monosynaptic input from motoneurons. Studies of locomotor-like activity in the anterior lumbar segments of the neonatal mouse cord revealed the existence of a rostrocaudal wave in the oscillatory component of each cycle of rhythmic motoneuron activity. This finding raises the possibility that the activation of mammalian motoneurons during locomotion may share some of the same rostrocaudally organized mechanisms that evolved to control swimming in fishes.  相似文献   

13.
Summary In addition to ependymal epithelial cells, numerous tanycytes are found along the entire central canal of the mouse. These tanycytes are arranged in clusters in the cervical, thoracic and lumbar segments of the spinal cord. In the conus medullaris, tanycytes separate and ensheath bundles of myelinated and unmyelinated axons; their processes take part in the formation of the stratum marginale gliae. In the caudal part of the spinal cord, the ventral wall of the central canal is thin and some areas are reduced to a single-cell thickness. In this region, ependymal cells participate directly in the formation of the stratum marginale gliae.The meninges consist of the intima piae, the pia mater, the arachnoid, a subdural neurothelium and the dura mater. The subarachnoid space appears occluded and opens only around the spinal roots. In the vicinity of the spinal ganglia, the dura mater, the subdural neurothelium and the arachnoid form a cellular reticulum.  相似文献   

14.
Summary Neural tubes of mouse embryos at Theiler Stages 14, 15, and 16 were grown in cultures for 21 d with 0.5 μCi/ml tritiated thymidine or cold growth medium. It was found that 50 to 60% of the neurons formed in the outgrowth zone were labeled, indicating that they formed from precursor cells that proliferated in the cultures. The unlabeled neurons must have formed from cells that were already postmitotic when the cultures were started. By comparing the total number of neurons per neuromere formed in vivo and in vitro, it seems that the postmitotic precursor cells survive better in cultures and only a small percentage of proliferative precursor cells in cultures enter the postmitotic stage and form neurons. This work was supported by Grant MT4235 from the Medical Research Council of Canada.  相似文献   

15.
Summary Whole mouse embryos were grown in vitro from Theiler stage 12 (1 to 7 somites) to Theiler stages 15 and 16 (25 to 35 somites). This procedure gives experimental access to precisely staged embryos during the early period of neurogenesis. To follow the further development of neurons in vitro, fragments of spinal primordia were set up from these cultured embryos. In such cultures, the proliferation of precursor cells, the formation of postmitotic cells and, finally, the cytodifferentiation of neurons were observed. A preliminary account of this work was given at the Tissue Culture Association Meeting in 1977, and the Canadian Federation of Biological Societies Meeting in 1977 (1,2). This work was supported by Grant MT 4235 from the Medical Research Council of Canada.  相似文献   

16.
Using anthropological methods, we measured the body height, length of the spine (ventral and dorsal), leg length, cord length. The data were evaluated statistically and we looked for correlation between leg length and body height, cord length and length of the spine, length of the spine and body height. On the basis of our results, we were able to determine the cord length for clinical use by computing the regression coefficient of leg length and spinal length.  相似文献   

17.
Aggregation of amyloid beta peptide into senile plaques and hyperphosphorylated tau protein into neurofibrillary tangles in the brain are the pathological hallmarks of Alzheimer's disease. Despite over a century of research into these lesions, the exact relationship between pathology and neurotoxicity has yet to be fully elucidated. In order to study the formation of plaques and tangles and their effects on the brain, we have applied multiphoton in vivo imaging of transgenic mouse models of Alzheimer's disease. This technique allows longitudinal imaging of pathological aggregation of proteins and the subsequent changes in surrounding neuropil neurodegeneration and recovery after therapeutic interventions.  相似文献   

18.
Diffusion tensor imaging (DTI) and tractographic reconstruction may be applied for in vivo clinical spinal cord studies. However, this structure represents a challenge to current acquisition and reconstruction strategies, due to its small size, motion artifacts, partial volume effects and low signal-to-noise-ratio (SNR). Aims of this work were to select the best approach for the estimate of SNR and to use it for spinal cord diffusion weighted (DW) sequence optimization.Seven methods for the estimate of SNR were compared on uniform phantom DW images, and the best performing approach (single ROI for signal and noise, difference of images—SNRdiff) was applied for the following in vivo sequence evaluations.Fifteen sequences with different parameters (voxel size, repetition (TR) and echo (TE) times) were compared according to SNR, resolution, fractional anisotropy (FA) and tractography performances on three healthy volunteers. In vivo optimization of DW sequences resulted in: axial sequence, with voxel size = 1.5 mm × 1.5 mm × 3.5 mm, TR = 3200 ms and TE = 89 ms, sagittal sequence with voxel size = 2.2 mm × 2.2 mm × 2 mm, TR = 3000 ms and TE = 84 ms.An objective method tested on phantom and a practical index for in vivo spinal cord DTI SNR estimation allowed to obtain axial and sagittal optimized sequences, providing excellent tractographic results, with acceptable acquisition times for in vivo clinical applications.  相似文献   

19.
小鼠脊髓损伤模型的建立及其评价   总被引:1,自引:0,他引:1  
通过对模型的制备模拟脊髓损伤,研究其病理和影像的变化及脊髓组织的病理分析,为后期的唔疗提供了实验信息。使用7~8周龄小鼠,咬除T9~T10棘突及相应椎板,用重物压迫脊髓,缝合皮肤,制成脊髓损伤模型。分不同的时间进行行为学评分及病理和影像学的检测。结果显示对照组在不同时间行为学评分较高,而实验组评分较低。脊髓损伤区出现明显的病理改变和影像学的改变。可见在实验组中小鼠脊髓损伤区无脊髓组织残留,且出现明显的组织和影像改变,在行为学上两组相比具有显著差异,适用于脊髓再生的研究,从而为进一步研究脊髓损伤提供了较为可靠的模型。  相似文献   

20.
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号