共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo imaging using two-photon microscopy in mice that have been genetically engineered to express fluorescent proteins in specific cell types has significantly broadened our knowledge of physiological and pathological processes in numerous tissues in vivo. In studies of the central nervous system (CNS), there has been a broad application of in vivo imaging in the brain, which has produced a plethora of novel and often unexpected findings about the behavior of cells such as neurons, astrocytes, microglia, under physiological or pathological conditions. However, mostly technical complications have limited the implementation of in vivo imaging in studies of the living mouse spinal cord. In particular, the anatomical proximity of the spinal cord to the lungs and heart generates significant movement artifact that makes imaging the living spinal cord a challenging task. We developed a novel method that overcomes the inherent limitations of spinal cord imaging by stabilizing the spinal column, reducing respiratory-induced movements and thereby facilitating the use of two-photon microscopy to image the mouse spinal cord in vivo. This is achieved by combining a customized spinal stabilization device with a method of deep anesthesia, resulting in a significant reduction of respiratory-induced movements. This video protocol shows how to expose a small area of the living spinal cord that can be maintained under stable physiological conditions over extended periods of time by keeping tissue injury and bleeding to a minimum. Representative raw images acquired in vivo detail in high resolution the close relationship between microglia and the vasculature. A timelapse sequence shows the dynamic behavior of microglial processes in the living mouse spinal cord. Moreover, a continuous scan of the same z-frame demonstrates the outstanding stability that this method can achieve to generate stacks of images and/or timelapse movies that do not require image alignment post-acquisition. Finally, we show how this method can be used to revisit and reimage the same area of the spinal cord at later timepoints, allowing for longitudinal studies of ongoing physiological or pathological processes in vivo. 相似文献
2.
We provide a protocol that describes imaging of single fluorescently labeled axons in the spinal cord of living mice. This method takes advantage of transgenic mouse lines in which the thy1-promoter drives the expression of variants of the green fluorescent protein in a small percentage (less than 1%) of sensory neurons. As a consequence, single axons can be resolved in the surgically exposed dorsal column using wide-field epifluorescence microscopy. This approach allows direct observation of axonal degeneration and regeneration in mouse models of spinal cord pathology for several hours or repetitively over the course of several days. 相似文献
3.
In vivo imaging of axonal degeneration and regeneration in the injured spinal cord 总被引:16,自引:0,他引:16
The poor response of central axons to transection underlies the bleak prognosis following spinal cord injury. Here, we monitor individual fluorescent axons in the spinal cords of living transgenic mice over several days after spinal injury. We find that within 30 min after trauma, axons die back hundreds of micrometers. This acute form of axonal degeneration is similar in mechanism to the more delayed Wallerian degeneration of the disconnected distal axon, but acute degeneration affects the proximal and distal axon ends equally. In vivo imaging further shows that many axons attempt regeneration within 6-24 h after lesion. This growth response, although robust, seems to fail as a result of the inability of axons to navigate in the proper direction. These results suggest that time-lapse imaging of spinal cord injury may provide a powerful analytical tool for assessing the pathogenesis of spinal cord injury and for evaluating therapies that enhance regeneration. 相似文献
4.
Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye
There is clearly a demand for an experimental platform that enables cell biology to be studied in intact vascularized and innervated tissue in vivo. This platform should allow observations of cells noninvasively and longitudinally at single-cell resolution. For this purpose, we use the anterior chamber of the mouse eye in combination with laser scanning microscopy (LSM). Tissue transplanted to the anterior chamber of the eye is rapidly vascularized, innervated and regains function. After transplantation, LSM through the cornea allows repetitive and noninvasive in vivo imaging at cellular resolution. Morphology, vascularization, cell function and cell survival are monitored longitudinally using fluorescent proteins and dyes. We have used this system to study pancreatic islets, but the platform can easily be adapted for studying a variety of tissues and additional biological parameters. Transplantation to the anterior chamber of the eye takes 25 min, and in vivo imaging 1-5 h, depending on the features monitored. 相似文献
5.
6.
Summary In the thoracic cord (posterior horn region) of a wild mouse, we have observed a small nerve cell soma completely enveloped by a myelin sheath. The number of myelin lamellae varied between 7 and 12. In one place, the existence of an inner mesoperikaryon could also be shown. The significance of this fortuitous finding has not yet been explained.
Zusammenfassung Im Thorakalmark (Hinterhornbereich) einer Wildmaus wurde ein kleines Nervenzellperikaryon beobachtet, das vollständig von einer Markscheide umhüllt war. Die Zahl der Markscheidenlamellen variierte zwischen 7 und 12. An einer Stelle konnte ein sogenanntes inneres Mesoperikaryon nachgewiesen werden. Die Bedeutung dieses zufällig erhobenen Befundes ist vorerst noch offen.相似文献
7.
Walter W. McAlhaney Naren L. Banik Seymour Greenfield Edward L. Hogan 《Neurochemical research》1986,11(2):173-183
Six proteolytic enzymes were assayed for activity in quaking CNS in examining the hypothesis that increased proteolytic activity contributes to the hypomyelination characteristic of this mutant. Cathepsin B-like enzyme, cathepsin D, neutral proteinase, calcium-activated neutral proteinase, prolyl endopeptidase, and diaminopeptidase II were assayed in whole homogenate of brain or spinal cord and each was found to have activity similar to that in normal mice. These results do not support a relationship between proteolysis and the genetic defect and suggest that other factors should be investigated to delineate the pathogenesis of this mutant. 相似文献
8.
9.
We have used calcium imaging to visualize the spatiotemporal organization of activity generated by in vitro spinal cord preparations of the developing chick embryo and the neonatal mouse. During each episode of spontaneous activity, we found that chick spinal neurons were activated rhythmically and synchronously throughout the transverse extent of the spinal cord. At the onset of a spontaneous episode, optical activity originated in the ventrolateral part of the cord. Back-labeling of spinal interneurons with calcium dyes suggested that this ventrolateral initiation was mediated by activation of a class of interneurons, located dorsomedial to the motor nucleus, that receive direct monosynaptic input from motoneurons. Studies of locomotor-like activity in the anterior lumbar segments of the neonatal mouse cord revealed the existence of a rostrocaudal wave in the oscillatory component of each cycle of rhythmic motoneuron activity. This finding raises the possibility that the activation of mammalian motoneurons during locomotion may share some of the same rostrocaudally organized mechanisms that evolved to control swimming in fishes. 相似文献
10.
Becker JS Kumtabtim U Wu B Steinacker P Otto M Matusch A 《Metallomics : integrated biometal science》2012,4(3):284-288
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.7 mm by implementing a new conventional ablation system (NWR-213) and improving the spatial resolution from 120 μm to 65 μm in routine mode. Element images of the spinal cord are provided for the first time and the metalloarchitecture was established using a multimodal atlas approach. Furthermore, the spatial distribution of Rb was mapped for the first time in biological tissue. Metal concentrations were quantified using matrix-matched laboratory standards and normalization of the respective ion intensities to the average (13)C ion intensity of standards and samples as a surrogate of slice thickness. The "butterfly" shape of the central spinal grey matter was visualized in positive contrast by the distributions of Fe, Mn, Cu and Zn and in negative contrast by C and P. Mg, Na, K, S and Rb showed a more homogenous distribution. The concentrations averaged throughout grey matter and white matter were 8 and 4 μg g(-1) of Fe, 3 and 2 μg g(-1) of Cu, 8 and 5 μg g(-1) of Zn, 0.4 and 0.2 μg g(-1) of Mn. The carbon concentration in white matter exceeded that of grey matter by a factor of 1.44. Zn and Cu at 9 and 4 μg g(-1), respectively, were particularly enriched in the laminae I and II, in line with the high synaptic and cellular density there. Surprisingly Zn but not Cu was enriched in the central channel. Rb occurred at 0.3 μg g(-1) with a distribution pattern congruent to that of K. The coefficients of variation were 6%, 5%, 8% and 10% for Fe, Cu, Zn and Mn, respectively, throughout three different animals measured on different days. These MSI analyses of healthy wild type spinal cords demonstrate the suitability of the established techniques for investigating diseased or transgenic states in future imaging studies. 相似文献
11.
Summary Neural tubes of mouse embryos at Theiler Stages 14, 15, and 16 were grown in cultures for 21 d with 0.5 μCi/ml tritiated thymidine or cold growth medium. It was found that 50 to 60% of the neurons formed in the outgrowth zone were labeled, indicating that they formed from precursor cells that proliferated in the cultures. The unlabeled neurons must have formed from cells that were already postmitotic when the cultures were started. By comparing the total number of neurons per neuromere formed in vivo and in vitro, it seems that the postmitotic precursor cells survive better in cultures and only a small percentage of proliferative precursor cells in cultures enter the postmitotic stage and form neurons. This work was supported by Grant MT4235 from the Medical Research Council of Canada. 相似文献
12.
Using anthropological methods, we measured the body height, length of the spine (ventral and dorsal), leg length, cord length. The data were evaluated statistically and we looked for correlation between leg length and body height, cord length and length of the spine, length of the spine and body height. On the basis of our results, we were able to determine the cord length for clinical use by computing the regression coefficient of leg length and spinal length. 相似文献
13.
Summary In addition to ependymal epithelial cells, numerous tanycytes are found along the entire central canal of the mouse. These tanycytes are arranged in clusters in the cervical, thoracic and lumbar segments of the spinal cord. In the conus medullaris, tanycytes separate and ensheath bundles of myelinated and unmyelinated axons; their processes take part in the formation of the stratum marginale gliae. In the caudal part of the spinal cord, the ventral wall of the central canal is thin and some areas are reduced to a single-cell thickness. In this region, ependymal cells participate directly in the formation of the stratum marginale gliae.The meninges consist of the intima piae, the pia mater, the arachnoid, a subdural neurothelium and the dura mater. The subarachnoid space appears occluded and opens only around the spinal roots. In the vicinity of the spinal ganglia, the dura mater, the subdural neurothelium and the arachnoid form a cellular reticulum. 相似文献
14.
Spires-Jones TL de Calignon A Meyer-Luehmann M Bacskai BJ Hyman BT 《Methods (San Diego, Calif.)》2011,53(3):201-207
Aggregation of amyloid beta peptide into senile plaques and hyperphosphorylated tau protein into neurofibrillary tangles in the brain are the pathological hallmarks of Alzheimer's disease. Despite over a century of research into these lesions, the exact relationship between pathology and neurotoxicity has yet to be fully elucidated. In order to study the formation of plaques and tangles and their effects on the brain, we have applied multiphoton in vivo imaging of transgenic mouse models of Alzheimer's disease. This technique allows longitudinal imaging of pathological aggregation of proteins and the subsequent changes in surrounding neuropil neurodegeneration and recovery after therapeutic interventions. 相似文献
15.
Ludovica Griffanti Francesca Baglio Maria Giulia Preti Pietro Cecconi Marco Rovaris Giuseppe Baselli Maria Marcella Laganà 《Biomedical signal processing and control》2012,7(3):285-294
Diffusion tensor imaging (DTI) and tractographic reconstruction may be applied for in vivo clinical spinal cord studies. However, this structure represents a challenge to current acquisition and reconstruction strategies, due to its small size, motion artifacts, partial volume effects and low signal-to-noise-ratio (SNR). Aims of this work were to select the best approach for the estimate of SNR and to use it for spinal cord diffusion weighted (DW) sequence optimization.Seven methods for the estimate of SNR were compared on uniform phantom DW images, and the best performing approach (single ROI for signal and noise, difference of images—SNRdiff) was applied for the following in vivo sequence evaluations.Fifteen sequences with different parameters (voxel size, repetition (TR) and echo (TE) times) were compared according to SNR, resolution, fractional anisotropy (FA) and tractography performances on three healthy volunteers. In vivo optimization of DW sequences resulted in: axial sequence, with voxel size = 1.5 mm × 1.5 mm × 3.5 mm, TR = 3200 ms and TE = 89 ms, sagittal sequence with voxel size = 2.2 mm × 2.2 mm × 2 mm, TR = 3000 ms and TE = 84 ms.An objective method tested on phantom and a practical index for in vivo spinal cord DTI SNR estimation allowed to obtain axial and sagittal optimized sequences, providing excellent tractographic results, with acceptable acquisition times for in vivo clinical applications. 相似文献
16.
Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes 总被引:17,自引:0,他引:17
Soto-Gutiérrez A Kobayashi N Rivas-Carrillo JD Navarro-Alvarez N Zhao D Zhao D Okitsu T Noguchi H Basma H Tabata Y Chen Y Tanaka K Narushima M Miki A Ueda T Jun HS Yoon JW Lebkowski J Tanaka N Fox IJ 《Nature biotechnology》2006,24(11):1412-1419
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes. 相似文献
17.
小鼠脊髓损伤模型的建立及其评价 总被引:1,自引:0,他引:1
通过对模型的制备模拟脊髓损伤,研究其病理和影像的变化及脊髓组织的病理分析,为后期的唔疗提供了实验信息。使用7~8周龄小鼠,咬除T9~T10棘突及相应椎板,用重物压迫脊髓,缝合皮肤,制成脊髓损伤模型。分不同的时间进行行为学评分及病理和影像学的检测。结果显示对照组在不同时间行为学评分较高,而实验组评分较低。脊髓损伤区出现明显的病理改变和影像学的改变。可见在实验组中小鼠脊髓损伤区无脊髓组织残留,且出现明显的组织和影像改变,在行为学上两组相比具有显著差异,适用于脊髓再生的研究,从而为进一步研究脊髓损伤提供了较为可靠的模型。 相似文献
18.
Myelin formation in cultures of previously dissociated spinal cord from foetal mice is described. In addition to the expected pattern of myelination, in which axons are closely wrapped by myelin lamellae, redundant folds of myelin have been found, as have double sheaths surrounding a single axon. Hypotheses concerning the generation of these appearances are discussed. It is suggested that certain intracytoplasmic laminar bodies found in oligodendrocytes in vitro may be of mitochondrial origin. 相似文献
19.
The ability to visualize the cellular inflammatory responses after experimental spinal cord injury (SCI) was investigated using a clinical 1.5-T magnetic resonance imaging scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA) imaging sequence and a superparamagnetic iron oxide (SPIO) contrast agent. An "active labeling" approach was used, with SPIO administered intravenously at different time points following SCI. Our results show that this strategy can be used to visualize clusters of iron-labeled cells associated with the inflammatory response in SCI. Of particular importance for this application was the finding that in FIESTA images hemorrhage does not cause signal loss. In T2-weighted spin echo or T2*-weighted gradient-echo images, which are more commonly used to detect signal loss associated with SPIO, the signal loss associated with hemorrhage interferes with the detection of iron-induced signal loss. FIESTA, therefore, allowed us to discriminate between iron associated with blood products in hemorrhage that occurs in acute SCI and the iron associated with SPIO-labeled cells accumulating in the injured cord. 相似文献
20.
We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo , and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo . Specifically, hydralazine (500 μmol/L to 1 mmol/L) can significantly alleviate acrolein (100–500 μmol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 μmol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo , an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role. 相似文献