共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of intracellular lipase/esterase have been reported in adipose tissue either by functional assays of activity or through proteomic analysis. In the current work, we have studied the relative expression level of 12 members of the lipase/esterase family that are found in white adipose tissue. We found that the relative mRNA levels of ATGL and HSL are the most abundant, being 2-3 fold greater than TGH or ADPN; whereas other intracellular neutral lipase/esterases were expressed at substantially lower levels. High fat feeding did not alter the mRNA expression levels of most lipase/esterases, but did reduce CGI-58 and WBSCR21. Likewise, rosiglitazone treatment did not alter the mRNA expression levels of most lipase/esterases, but did increase ATGL, TGH, CGI-58 and WBSCR21, while reducing ADPN. WAT from HSL-/- mice showed no compensatory increase in any lipase/esterases, rather mRNA levels of most lipase/esterases were reduced. In contrast, BAT from HSL-/- mice showed an increase in ATGL expression, as well as a decrease in ES-1, APEH and WBSCR21. Analysis of the immunoreactive protein levels of some of the lipases confirmed the results seen with mRNA. In conclusion, these data highlight the complexity of the regulation of the expression of intracellular neutral lipase/esterases involved in lipolysis. 相似文献
2.
3.
《生物化学与生物物理学报:疾病的分子基础》2014,1842(9):1870-1878
Obesity has been reported as an independent risk factor for chronic kidney disease, leading to glomerulosclerosis and renal insufficiency. To assess the relationship between a reduced nephron number and a particular susceptibility to obesity-induced renal damage, mice underwent uninephrectomy (UNX) followed by either normal chow or high-fat diet (HFD) and were compared with sham-operated control mice. After 20 weeks of dietary intervention, HFD-fed control mice presented characteristic features of progressive nephropathy, including albuminuria, glomerulosclerosis, renal fibrosis and oxidative stress. These changes were more pronounced in HFD-fed mice that had undergone uninephrectomy. Analysis of gene expression in mouse kidney by whole genome microarrays indicated that high fat diet led to more changes in gene expression than uninephrectomy. HFD affected mainly genes involved in lipid metabolism and transport, whereas the combination of UNX and HFD additionally altered the expression of genes belonging to cytoskeleton remodeling, fibrosis and hypoxia pathways. Canonical pathway analyses identified the farnesoid X receptor (FXR) as a potential key mediator for the observed changes in gene expression associated with UNX-HFD. In conclusion, HFD-induced kidney damage is more pronounced following uninephrectomy and is associated with changes in gene expression that implicate FXR as a central regulatory pathway. 相似文献
4.
Krishna M. Boini Min Xia Justin M. Abais Guangbi Li Ashley L. Pitzer Todd W.B. Gehr Yang Zhang Pin-Lan Li 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer's disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc−/−), wild type (Asc+/+) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc−/− mice or substantially reduced in Asc shRNA transfected mice compared to Asc+/+ mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc−/− and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI) were also significantly attenuated in Asc−/− and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc−/− and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury. 相似文献
5.
Shen HC Szymonifka MJ Kharbanda D Deng Q Carballo-Jane E Wu KK Wu TJ Cheng K Ren N Cai TQ Taggart AK Wang J Tong X Waters MG Hammond ML Tata JR Colletti SL 《Bioorganic & medicinal chemistry letters》2007,17(24):6723-6728
A urea class of high affinity niacin receptor agonists was discovered. Compound 1a displayed good PK, better in vivo efficacy in reducing FFA in mouse than niacin, and no vasodilation in a mouse model. Compound 1q demonstrated equal affinity to GPR109A as niacin. 相似文献
6.
Injections of 6-hydroxydopamine in mouse neonates caused extensive and long lasting damage to the sympathetic nervous system and impaired brown fat development. Brown adipose tissue (BAT) thermogenic capacity of sympathectomized mice (up to 120 days old) was reduced because of marked reductions in the tissue mitochondrial protein content and the mitochondrial concentration of uncoupling protein, as assessed by [3H]GDP binding and immunoassay. Neonatal sympathectomy did not affect BAT DNA content. Sympathectomized mice also had reduced epinephrine-stimulated rates of oxygen consumption. BAT of sympathectomized mice failed to respond by increases in [3H]GDP binding to isolated mitochondria and uncoupling protein concentration when animals were offered a palatable high-fat dietary supplement that increased calorie intake of both normal and sympathectomized mice. The high-fat diet caused increases in body weight, carcass fat, and gonadal white fat pad weights in sympathectomized animals that were similar to those of control mice. These results show that inactivation of BAT metabolism did not accentuate the development of obesity caused by a dietary supplement rich in fat and suggest that stimulation of BAT metabolism was not very effective in counteracting the obesity-inducing effect of this diet. 相似文献
7.
Gharbaoui T Skinner PJ Shin YJ Averbuj C Jung JK Johnson BR Duong T Decaire M Uy J Cherrier MC Webb PJ Tamura SY Zou N Rodriguez N Boatman PD Sage CR Lindstrom A Xu J Schrader TO Smith BM Chen R Richman JG Connolly DT Colletti SL Tata JR Semple G 《Bioorganic & medicinal chemistry letters》2007,17(17):4914-4919
A strategy for lead identification of new agonists of GPR109a, starting from known compounds shown to activate the receptor, is described. Early compound triage led to the formulation of a binding hypothesis and eventually to our focus on a series of pyrazole acid derivatives. Further elaboration of these compounds provided a series of 5,5-fused pyrazoles to be used as lead compounds for further optimization. 相似文献
8.
《Peptides》2013
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents. 相似文献
9.
Differential activity of Frizzled in the R3/R4 photo-receptors of Drosophila regulates the orientation of ommatidia. New evidence suggests that the cadherins Dachsous and Fat act upstream of Frizzled in this process. 相似文献
10.
光周期和高脂食物对布氏田鼠能量代谢和产热的影响 总被引:7,自引:0,他引:7
为了研究光周期和高脂食物对小型哺乳动物能量代谢和产热的影响,将成年雌性布氏田鼠(Lasiopodomys brandtii)分别驯化于长光照低脂、高脂食物和短光照低脂、高脂食物,7周后测定动物的体重、能量摄入、产热、血清瘦素浓度以及褐色脂肪组织解偶联蛋白1(BAT-UCP1)含量等参数.结果发现:1)短光照抑制体重增长、降低体脂重量和血清瘦素水平,增加非颤抖性产热(NST)和UCP1含量;2)高脂食物使摄入能减少和消化率提高,但未显著影响体重、基础代谢率、NST、UCP1含量和血清瘦素;3)血清瘦素与摄入能不相关,但与体脂含量正相关.结果暗示:短光照下瘦素作用敏感性增加和产热能力增强,可能介导了抵抗高脂食物诱导的肥胖.在野外条件下草食性的布氏田鼠能通过能量代谢和产热的适应性调节避免体重的过度增长,有利于降低捕食风险,增强生存能力.同时布氏田鼠是研究食物诱导肥胖机理的一个好模型 相似文献
11.
Skinner PJ Cherrier MC Webb PJ Shin YJ Gharbaoui T Lindstrom A Hong V Tamura SY Dang HT Pride CC Chen R Richman JG Connolly DT Semple G 《Bioorganic & medicinal chemistry letters》2007,17(20):5620-5623
A series of 5-alkyl pyrazole-3-carboxylic acids were prepared and found to act as potent and selective agonists of the human GPCR, GPR109a, the high affinity nicotinic acid receptor. No activity was observed at the highly homologous low affinity niacin receptor, GPR109b. A further series of 4-fluoro-5-alkyl pyrazole-3-carboxylic acids were shown to display similar potency. One example from the series was shown to have improved properties in vivo compared to niacin. 相似文献
12.
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction. 相似文献
13.
Increased dietary fat intake in general, and saturated fat specifically, will lead to the impairment of insulin action. The aim of this study was to find out the changes in hepatic glucose output in dependence of fat diet and a possible direct action of insulin and trogitazone in hepatocytes. Hepatocytes were isolated by a collagenase perfusion technique and cultured for 24 h in M 199 serum-free medium. The glucose production in hepatocytes isolated from rats on high fat diet (unsaturated fat) was 79% higher compared to control and even 139% higher than in rats on high-fat diet (saturated fat). Troglitazone significantly decreased the glucose production in hepatocytes obtained from rats on unsaturated fat diet. The troglitazone in presence of insulin totally normalized glucose production but also only in hepatocytes obtained from rats on unsaturated-fat diet. The troglitazone showed an insulinomimetic as well as insulin-sensitizing effect but only in rats on unsaturated-fat diet. 相似文献
14.
It is well known that troglitazone and voluntary running have the capacity to improve insulin resistance. The purpose of this study was to evaluate the combination effect of troglitazone and voluntary running on insulin action. Female rats aged 7 weeks were divided into high-fat diet (HF), high-fat diet + troglitazone (0.3% in diet; Tg), high-fat diet + voluntary running (for 3 wks; Tr), high-fat diet + troglitazone + voluntary running (Tg-Tr), and control (C) groups. A sequential euglycemic clamp experiment with two different insulin infusion rates of 3.0 (L-clamp) and 30.0 mU/kg BW/min (H-clamp) was performed on these rats after an overnight fast. Blood glucose concentrations were kept at fasting levels by periodic adjustment of the intravenous glucose infusion rate during the clamp experiment. Glucose infusion rates (GIRs) calculated from 60 to 90, 150 to 180 min were regarded as an index of whole body insulin action. After the clamp experiment, we determined the amount of glycogen content in the gastrocnemius muscle. Fat feeding markedly reduced GIRs in both L- and H- clamp experiments compared with C. Troglitazone treatment did not improve high-fat induced insulin resistance. In both L- and H-clamp experiments, GIRs were increased by voluntary running compared with HF, and reached the same levels as in C. GIRs of Tg-Tr were not greater than those of Tr. Glycogen content in gastrocnemius muscle showed the same trend as the results for GIRs. Therefore, the combination effect of troglitazone and voluntary running on insulin action was not found, but the effect of voluntary running was shown in fat-induced insulin resistance. 相似文献
15.
Insulin resistance is a common phenomenon in obesity and Type 2 diabetes. Common factor important for development of diabetes and insulin resistance is intake of saturated fat. Vanadate treatment improves glucose homeostasis in vivo. The aim of this study was to find out changing of hepatic glucose output in dependence of saturated fat diet and possible direct action of vanadate in cultured hepatocytes. Hepatocytes were isolated by a collagenase perfusion technique and cultured for 24 h in M 199 serum-free medium. The glucose production in hepatocytes isolated from rats on high saturated fat diet was significantly 139% higher comparable to standard controls. Glucagon 100% increased glucose production in hepatocytes from rats on standard diet and 200% in hepatocytes on saturated high fat diet. The addition vanadate significantly decreased basic glucose production and did not influence glucagon stimulated glucose production. Presence of insulin did not influence either glucagon or vanadate effect. High saturated fat diet not only increases insulin resistance but also decreases chances of successful therapy of diabetes. 相似文献
16.
S Tsujii Y Nakai J Fukata S Nakaishi H Takahashi T Usui H Imura 《Endocrinologia japonica》1987,34(6):903-909
The levels of immunoreactive beta-endorphin (ir-beta-EP) were measured in the brain and pituitary of lean Zucker rats subjected to food deprivation for 72 h and to a high fat diet, and in fatty Zucker rats after food deprivation for 72 h. Ir-beta-EP was increased in the neurointermediate (NI-) pituitary lobe but reduced in the medulla-pons of fatty rats when compared to lean littermates fed ad libitum. Food deprivation decreased ir-beta-EP in the cortex and medulla-pons of lean rats and in the cortex, midbrain and NI-pituitary of fatty rats. In contrast, ir-beta-EP was increased in the anterior pituitary of lean rats and in the striatum of fatty rats after deprivation. The high fat diet produced a decrease in ir-beta-EP in the cortex, midbrain and NI-pituitary with an increase in the striatum and hypothalamus of lean rats. These results suggest that the ir-beta-EP concentration could be differentially affected in different brain regions of Zucker rats by changes in the energy balance. 相似文献
17.
It is well recognized that diet-induced dysfunctions in skeletal muscle are closely related with many metabolic diseases,
such as obesity and diabetes. In the present study, we identified global changes in gender-dependent gene expressions in the
soleus muscle of lean and obese rats fed a high fat diet (HFD), using DNA microarray analysis. Prior to microarray analysis,
the body weight gains were found to be higher in male HFD rats than the female HFD rats. To better understand the detailed
phenotypic differences in response to HFD feeding, we identified differential gene expression in soleus muscle between the
genders. To this end, we extracted and summarized the genes that were up- or down-regulated more than 1.5-fold between the
genders in the microarray data. As expected, a greater number of genes encoding myofibrillar proteins and glycolytic proteins
were expressed higher in males than females when exposed to HFD, reflecting greater muscular activity and higher capacity
for utilizing glucose as an energy fuel. However, a series of genes involved in oxidative metabolism and cellular defenses
were more up-regulated in females than males. These results allowed us to conclude that compared to males, females have greater
fat clearing capacity in skeletal muscle through the activation of genes encoding enzymes for fat oxidation. In conclusion,
our microarray data provide a better understanding of the molecular events underlying gender dimorphism in soleus muscle,
and will provide valuable information in improving gender awareness in the health care system. 相似文献
18.
GPR40 gene expression in human pancreas and insulinoma 总被引:3,自引:0,他引:3
Tomita T Masuzaki H Noguchi M Iwakura H Fujikura J Tanaka T Ebihara K Kawamura J Komoto I Kawaguchi Y Fujimoto K Doi R Shimada Y Hosoda K Imamura M Nakao K 《Biochemical and biophysical research communications》2005,338(4):1788-1790
To assess gene expression of a membrane-bound G-protein-coupled fatty acid receptor, GPR40, in the human pancreas and islet cell tumors obtained at surgery were analyzed. The mRNA level of the GPR40 gene in isolated pancreatic islets was approximately 20-fold higher than that in the pancreas, and the level was comparable to or rather higher than that of the sulfonylurea receptor 1 gene, which is known to be expressed abundantly in human pancreatic beta cells. A large amount of GPR40 mRNA was detected in tissue extracts from two cases of insulinoma, whereas the expression was undetectable in glucagonoma or gastrinoma. The present study demonstrates that GPR40 mRNA is expressed predominantly in pancreatic islets in humans and that GPR40 mRNA is expressed solely in human insulinoma among islet cell tumors. These results indicate that GPR40 is probably expressed in pancreatic beta cells in the human pancreas. 相似文献
19.