首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven international jumpers and throwers engaged in year round training were divided into experimental (n = 6) and control (n = 5) groups. The experimental group was tested before and after a 3 weeks simulated hypergravity period, and again 4 weeks after the hypergravity period. The high gravity condition was created by wearing a vest weighing about 13% of the subjects body weight. The vest was worn from morning to evening including the training sessions, and only removed during sleep. The daily training of all subjects consisted of classical weight training and jumping drills. No changes in the ordinary training program were allowed in the experimental group, except for the use of the vest. Vertical jumps, drop jumps and a 15 s continuous jumping test were used to measure the explosive power characteristics of the subjects. After the hypergravity period the experimental subjects demonstrated significant (5-10%, P less than 0.05-0.01) improvements in most of the variables studied: however, 4 weeks after cessation of the high gravity period they tended to return towards the starting values. No changes were observed in the results of the control group. The improvement observed in the experimental subjects was explained as fast adaptation to the simulated high gravity field. It is suggested that adaptation had occurred both in neuromuscular functions and in metabolic processes.  相似文献   

2.
Metabolic response of endurance athletes to training with added load   总被引:1,自引:0,他引:1  
Endurance athletes were divided into experimental (n = 12) and control (n = 12) groups to investigate the effects of extra-load training on energy metabolism during exercise. A vest weighing 9%-10% body weight was worn every day from morning to evening for 4 weeks including every (n = 6) or every other (n = 6) training session. After 4 weeks the control group had a lower blood lactate concentration during submaximal running, whereas the experimental group had significantly higher blood lactate and oxygen uptake (p less than 0.01--p less than 0.05), and a lower 2 mmol lactate threshold (p less than 0.05) and an increased blood lactate concentration after a short running test to exhaustion (p less than 0.05). Those experimental subjects (n = 6) who used the added load during every training session had a lower 2 mmol lactate threshold, improved running time to exhaustion, improved vertical velocity when running up stairs and an increased VO2 during submaximal running after the added load increased anaerobic metabolism in the leg muscle during submaximal and maximal exercise. An increased recruitment and adaptation of the fast twitch muscle fibres is suggested as the principal explanation for the observed changes.  相似文献   

3.
The purpose of this study was to examine the acute effects of 3 different warm-up protocols with and without a weighted vest on vertical jump (VJ) and long jump (LJ) performance in athletic women. Sixteen subjects (19.7 +/- 1.4 years, 67.0 +/- 10.7 kg, 165.7 +/- 11.4 cm) participated in 3 testing sessions in random order on 3 nonconsecutive days. Prior to the testing of the VJ and LJ, the subjects performed 1 of the following 10-minute warm-up protocols: (a) low- to moderate-intensity stationary cycling followed by 4 lower-body static stretches (SS) (3 x 20 seconds); (b) 12 moderate- to high-intensity dynamic exercises (DY); and (c) the same 12 dynamic exercises with a weighted vest (10% of body mass) worn for the last 4 exercises (DYV). Analysis of the data revealed that VJ performance was significantly greater (p < 0.05) following DYV (43.9 +/- 6.7 cm) and DY (43.6 +/- 6.5 cm) as compared to SS (41.7 +/- 6.0 cm). Long jump performance was significantly greater (p < 0.05) following DYV (186.8 +/- 19.5 cm) as compared to DY (182.2 +/- 19.1 cm), which in turn was significantly greater (p < 0.05) than performance following SS (177.2 +/- 18.8 cm). Warm-up protocols that include dynamic exercise may be a viable method of enhancing jumping performance in athletic women as compared to stationary cycling and static stretching. In addition, these data suggest that it may be desirable for athletic women to perform dynamic exercises with a weighted vest on some movements prior to the performance of the long jump.  相似文献   

4.
ABSTRACT: Burden, RJ and Glaister, M. The effects of ionized and nonionized compression garments on sprint and endurance cycling. J Strength Cond Res 26(10): 2837-2843, 2012-The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, V[Combining Dot Above]O2max: 50.86 ± 6.81 ml·kg·min) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit V[Combining Dot Above]O2max [pV[Combining Dot Above]O2max] + 3 minutes recovery at 40% pV[Combining Dot Above]O2max + 30-second Wingate test + 3 minutes recovery at 40% pV[Combining Dot Above]O2max) and 3 endurance trials (30 minutes at 60% pV[Combining Dot Above]O2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L, 95% likely range: 0.1-1.1 mmol·L). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.  相似文献   

5.
This study evaluated the effectiveness of a six-pack versus a four-pack cool vest in reducing heat strain in men dressed in firefighting ensemble, while resting and exercising in a warm/humid environment [34.4°C (day bulb), 28.9°C (wet bulb)]. Male volunteers (n = 12) were monitored for rectal temperature (T re), mean skin temperature (T sk), heart rate, and energy expenditure during three test trials: control (no cool vest), four-pack vest, and six-pack vest. The cool vests were worn under the firefighting ensemble and over Navy dungarees. The protocol consisted of two cycles of 30 min seated rest and 30 min walking on a motorized treadmill (1.12 m · s–1, 0% grade). Tolerance time for the control trial (93 min) was significantly less than both vest trials (120 min). Throughout heat exposure, energy expenditure varied during rest and exercise, but no differences existed among all trials (P > 0.05). During the first 60 min of heat exposure, physiological responses were similar for the four-pack and six-pack vests. However, during the second 60 min of heat exposure the six-pack vest had a greater impact on reducing heat strain than the four-pack vest. PeakT e andT sk at the end of heat exposure for 6-pack vest [mean (SD) 38.0(0.3)°C and 36.8(0.7)°C] were significantly lower compared to four-pack [38.6 (0.4)°C and 38.1(0.5)°C] and controls [38.9(0.5)°C and 38.4(0.5)°C]. Our findings suggest that the six-pack vest is more effective than the four-pack vest at reducing heat strain and improves performance of personnel wearing a firefighting ensemble.  相似文献   

6.
We investigated whether a cooling vest worn during an active warm-up enhances 5-km run time in the heat. Seventeen competitive runners (9 men, maximal oxygen uptake = 66.7 +/- 5.9 ml x kg(-1) x min(-1); 8 women, maximal oxygen uptake = 58.0 +/- 3.2 ml x kg(-1) x min(-1)) completed two simulated 5-km runs on a treadmill after a 38-min active warm-up during which they wore either a T-shirt (C) or a vest filled with ice (V) in a hot, humid environment (32 degrees C, 50% relative humidity). Wearing the cooling vest during warm-up significantly (P < 0.05) blunted increases in body temperature, heart rate (HR), and perception of thermal discomfort during warm-up compared with control. At the start of the 5-km run, esophageal, rectal, mean skin, and mean body temperatures averaged 0.3, 0.2, 1.8, and 0.4 degrees C lower; HR averaged 11 beats/min lower; and perception of thermal discomfort (5-point scale) averaged 0.6 point lower in V than C. Most of these differences were eliminated during the first 3.2 km of the run, and these variables were not different at the end. The 5-km run time was significantly lower (P < 0.05) by 13 s in V than C, with a faster pace most evident during the last two-thirds of the run. We conclude that a cooling vest worn during active warm-up by track athletes enhances 5-km run performance in the heat. Reduced thermal and cardiovascular strain and perception of thermal discomfort in the early portion of the run appear to permit a faster pace later in the run.  相似文献   

7.
The purpose of this study was to investigate the relationship that age has on factors affecting running economy (RE) in competitive distance runners. Fifty-one male and female subelite distance runners (Young [Y]: 18-39 years [n = 18]; Master [M]: 40-59 years [n = 22]; and Older [O]: 60-older [n = 11]) were measured for RE, step rate, lactate threshold (LT), VO2max, muscle strength and endurance, flexibility, power, and body composition. An RE test was conducted at 4 different velocities (161, 188, 215, and 241 m·min(-1)), with subjects running for 5 minutes at each velocity. The steady-state VO2max during the last minute of each stage was recorded and plotted vs. speed, and a regression equation was formulated. A 1 × 3 analysis of variance revealed no differences in the slopes of the RE regression lines among age groups (y = 0.1827x - 0.2974; R2 = 0.9511 [Y]; y = 0.1988x - 1.0416; R2 = 0.9697 [M]; y = 0.1727x + 3.0252; R2 = 0.9618 [O]). The VO2max was significantly lower in the O group compared to in the Y and M groups (Y = 64.1 ± 3.2; M = 56.8 ± 2.7; O = 44.4 ± 1.7 mlO2·kg(-1)·min(-1)). The maximal heart rate and velocity @ LT were significantly different among all age groups (Y = 197 ± 4; M = 183 ± 2; O = 170 ± 6 b·min(-1) and Y = 289.7 ± 27.0; M = 251.5 ± 32.9; O = 212.3 ± 24.6 m·min(-1), respectively). The VO2max @ LT was significantly lower in the O group compared to in the Y and M groups (Y = 50.3 ± 2.0; M = 48.8 ± 2.9; O = 34.9 ± 3.2 mlO2·kg(-1)·min(-1)). The O group was significantly lower than in the Y and M groups in flexibility, power, and upper body strength. Multiple regression analyses showed that strength and power were significantly related to running velocity. The results from this cross-sectional analysis suggest that age-related declines in running performance are associated with declines in maximal and submaximal cardiorespiratory variables and declines in strength and power, not because of declines in running economy.  相似文献   

8.
Optimizing transference of gym-based strength and power gains to sporting performance necessitates a physiological and biomechanical understanding of the weight-training exercise as well as the sporting activity. With this in mind, this paper describes the kinematics and kinetics associated with a seated row. The maximal strength and concentric power-load spectrum (30- 100% 1 repetition maximum [1RM]) for the cable seated row was assessed using Olympic rowers (n = 8). In terms of temporal characteristics, peak force across all loads occurred within the first 25% of movement time. Peak power across loads occurred within 35-45% of movement time. With regard to position, peak force occurred within 8.3% and peak power within 27-35% of the start of the concentric phase. To estimate the load that maximized mechanical power output, a quadratic was fitted to each subject's power output vs. 1RM. In terms of mean power, an estimated load of 81.4% (+/- 9.7%) 1RM was found to maximize power output. A 10 and 20% change in load each side of this maximum resulted in a 1.8 and 7.3% decrease in power output, respectively. The predilection of research to train all subjects at 1 load is fundamentally flawed due to interindividual maximum power differences (range in this study = 69-100% 1RM). Also, the importance of this measure would seem questionable, given that loads either side of the load that maximize power output do not change power output substantially.  相似文献   

9.
We studied the effects of 2G hypergravity on the survival, body mass and growth of postnatal rats (Rattus norvegicus). Nursing litters comprised of either neonatal (Postnatal day [P]7) or pre-weanling (P14) rats and their mothers were exposed to 16 days of continuous centrifugation. All of the offspring survived and gained body mass, indicating that mothers nursed their young. Following the onset of centrifugation, neonatal and pre-weanling rats showed a reduction in growth relative to age-matched environmental controls (EC). At the completion of testing, body mass of the hypergravity (HG) groups was significantly less than that of controls (p<0.05). Over the course of the test, the HG-exposed P7 group showed an overall 55% gain in body mass as compared to a 71% increase in controls, while the HG-exposed P14 group showed a 62% increase relative to 75% in controls. Neonatal offspring (P7) gained body mass during centrifugation, but at significantly slower rates as compared to EC controls (p<0.05). In contrast, growth rates of pre-weanling (P14) rats were not reduced relative to controls, possibly related to the initiation of weaning, around P18 in the rat. These findings raise key issues relevant to studies of nursing mammals reared in altered gravity.  相似文献   

10.
The aim of this study was to examine the relationship between the playing level in soccer (i.e., amateur vs. professional players) and the physiological impact, perceptual responses, time-motion characteristics, and technical activities during various small-sided games (SSGs). Twenty international players (27.4 ± 1.5 years and 17.4 ± 0.8 km·h(-1) of vVO(2)max) and 20 amateur players of the fourth French division (26.3 ± 2.2 years and 17.0 ± 1.2 km·h(-1) of vVO(2)max) played 9 SSGs (i.e., 2 vs. 2, 3 vs. 3, and 4 vs. 4) in which the number of ball touches authorized by possession varied (1 ball touch authorized = 1T, 2 ball touches authorized = 2T, and Free Play = FP). Heart rate (HR), blood lactate ([La]), subjective perception of effort (rating of perceived exertion [RPE]), physical performance, and technical performance of all players were analyzed during all SSGs. Across the various SSGs, amateurs completed a lower percent of successful passes (p < 0.01), recorded higher RPE and [La] values, lost a greater amount of ball possessions (p < 0.001), and covered less total distance with respect to sprinting and high-intensity running (HIR). The HR responses, however, were similar when expressed as %HRmax and %HRreserve. The comparison of the professional and amateur soccer players' activities during SSGs showed that the playing level influenced the physiological responses, physical and technical activities. Consequently, this study has shown that the main differences between elite and amateur players within SSGs concerned their capacity to perform high-intensity actions (HIR and sprints) and execute various technical abilities (in particular number of ball lost per possession and percentage of successful passes).  相似文献   

11.
L-[14C]glutamate uptake process by nerve terminals has been investigated using glutamate analogs (nontransportable and transportable inhibitors of glutamate transporters) as tools. The effects of L-threo-beta-benzyloxyaspartate (DL-TBOA) and L-threo-beta-hydroxyaspartate (L-TBHA) on uptake of L-[14C] glutamate have been evaluated after exposure of rats to centrifuge-induced hypergravity. Both glutamate analogs potently inhibited L-[14C] glutamate uptake in dose-dependent manner. The IC50 values for DL-TBOA (nontransportable analog) calculated on the basis of curves of non-linear regression kinetic analysis was 18 +/- 2 micromoles and 11 +/- 2 micromoles (P < or = 0.05) before and after exposure to artificial gravity, respectively. Inhibition caused by 10 micromoles DL-TBOA was significantly increased from 38.0 +/- 3.8% in control group to 51.0 +/- 4.1% in animals, exposed to hypergravity (P < or = 0.05). L-TBHA, transportable analog, exhibited similar inhibitory characteristics.  相似文献   

12.
Using rat brain synaptosomes, we have investigated the effect of hypergravity on the kinetic parameters of Na(+)-dependent, high-affinity L-glutamate transport activity. The time-course of L-[14C]-glutamate uptake and dependence of L-[14C]-glutamate uptake velocity on glutamate concentrations were analyzed. K(m) and Vmax of this process have been determined. The hypergravity stress was created by centrifugation of rats for 1 hour at 10 g. We observed no differences in K(m) values between the control rats (10.7 +/- 2.5 microM) and animals exposed to hypergravity (6.7 +/- 1.5 microM). The similarity of this parameter for the two studied groups of animals showed that affinity of glutamate transporter to substrate was not sensitive to hypergravity stress. In contrast, the maximal velocity of glutamate uptake changed in hypergravity conditions. Vmax reduced from 12.5 +/- +/- 3.2 nmol/min per 1 mg of protein (control group) to 5.6 +/- 0.9 nmol/min per 1 mg of protein (animals, exposed to hypergravity stress). The possible mechanisms of attenuation of the glutamate transporter activity without modifying K(m) of glutamate uptake were discussed.  相似文献   

13.
L-[14C]glutamate uptake and release processes in nerve terminals has been investigated using the nontransportable and transportable competitive inhibitors of glutamate transport as tools. The effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and DL-threo-beta-hydroxyaspartate (DL-THA) on the accumulation of L-[14C]glutamate have been evaluated after the exposure of rats to centrifuge-induced hypergravity. Both analogs potently inhibited the L-[14C]glutamate uptake in a dose-dependent manner (100 microM glutamate, 30 s incubation period). The IC50 values for DL-TBOA calculated on the basis of curves of non-linear regression kinetic analysis was 18 +/- 2 microM and 11 +/- 2 microM (p < or = 0.05) before and after the exposure to artificial gravity, respectively. L-THA, transportable analog, exhibited similar inhibitory characteristics (18 +/- 2 and 12 +/- 2 microM, respectively). We have also demonstrated that DL-TBOA exerted slighter effect on depolarization-evoked carrier-mediated L-[14C]glutamate release in control rats in comparison with gravity-loaded ones. Thus, DL-TBOA had complex effect on glutamatergic transmission, inhibited uptake and release of L-glutamate, and perhaps, became more potent under centrifuge-induced hypergravity.  相似文献   

14.
Vitamin D (VitD) supplementation has been advocated for cardiovascular risk reduction; however, supporting data are sparse. The objective of this study was to determine whether VitD supplementation reduces cardiovascular risk. Subjects in this prospective, randomized, double-blind, placebo-controlled trial of post-menopausal women with serum 25-hydroxyvitamin D concentrations >10 and <60 ng/mL were randomized to Vitamin D3 2500 IU or placebo, daily for 4 months. Primary endpoints were changes in brachial artery flow-mediated vasodilation (FMD), carotid-femoral pulse wave velocity (PWV), and aortic augmentation index (AIx). The 114 subjects were mean (standard deviation) 63.9 (3.0) years old with a 25-hydroxyvitamin D level of 31.3 (10.6) ng/mL. Low VitD (<30 ng/mL) was present in 47% and was associated with higher body-mass index, systolic blood pressure, glucose, CRP, and lower FMD (all p<0.05). After 4 months, 25-hydroxyvitamin D levels increased by 15.7 (9.3) ng/mL on vitamin D3 vs. -0.2 (6.1) ng/mL on placebo (p<0.001). There were no significant differences between groups in changes in FMD (0.3 [3.4] vs. 0.3 [2.6] %, p = 0.77), PWV (0.00 [1.06] vs. 0.05 [0.92] m/s, p = 0.65), AIx (2.7 [6.3] vs. 0.9 [5.6] %, p = 0.10), or CRP (0.3 [1.9] vs. 0.3 [4.2] mg/L, p = 0.97). Multivariable models showed no significant interactions between treatment group and low VitD status (<30 ng/mL) for changes in FMD (p = 0.65), PWV (p = 0.93), AIx (p = 0.97), or CRP (p = 0.26). In conclusion, VitD supplementation did not improve endothelial function, arterial stiffness, or inflammation. These observations do not support use of VitD supplementation to reduce cardiovascular disease risk.  相似文献   

15.
The administration of 30 mg/kg of body weight of an alpha-ketoglutarate-pyridoxine complex (alpha-KG compl; stoichiometric ratio alpha-KG: pyridoxine 46.35 to 53.65) to trained non-athletic individuals increases VO2 max by 6% (p less than 0.005). The kinetics of the VO2on- and off-responses at the onset and offset of a rectangular work load is not affected by the drug. Peak blood lactate concentration [Lab] following two supramaximal running work loads lasting 60 s and 132 +/- 4 s, respectively is significantly (p less than 0.05 and p less than 0.005) less after the alpha-KG compl treatment (delta Lab = -1.1 and -2.7 mmol . l-1, respectively) than in a control group. The half time (t1/2) of La disappearance from blood during recovery is unaffected by the alpha-KG compl treatment (19.7 min vs 19.5 min). The increase in VO2 max and the corresponding decrease of [Lab] are not found after separate administration of either of the components of the complex. It is concluded that alpha-KG complex stimulates aerobic metabolism, probably prompting mitochondrial reabsorption of alpha-KG, which activates the malate-oxalacetate shuttle and the generation of high energy phosphates at the substrate level.  相似文献   

16.
Exercise-induced muscle damage (EIMD) has been shown to reduce force production and result in delayed-onset soreness and pain in the damaged muscle(s). Cycling in the presence of EIMD reduces peak power output and time-trial performance. However, its effect on peak aerobic capacity has not been widely studied. The purpose of this study was to examine the impact of EIMD targeted specifically to the quadriceps muscle group on peak oxygen consumption (V[Combining Dot Above]O2peak) during cycling. Ten participants (4 men, 6 women) completed a V[Combining Dot Above]O2peak test on a cycle ergometer before and 48 hours after performing 24 eccentric contractions with their right and left quadriceps with a weight equal to 120% of 1-repetition maximal concentric strength (1RM). The EIMD was assessed using 1RM, and muscle soreness was assessed using a 100-mm visual analog scale. The presence of EIMD was confirmed by a 9% reduction in 1RM (p = 0.0001) and increased ratings of soreness from 2.4 ± 2.1 to 24.6 ± 10.8 mm (p = 0.001). The V[Combining Dot Above]O2peak was reduced from 46.2 ± 9.7 to 41.8 ± 10.7 ml·kg·min (10%; p = 0.01) with participants terminating exercise at lower heart rates 191 ± 9 vs. 186 ± 10 b·min (p = 0.02) and power output 248 ± 79 vs. 238 ± 81 W (p = 0.02) after EIMD. Additionally, ventilatory threshold decreased from 34.2 ± 7.8 to 30.5 ± 8.5 ml·kg·min (11%; p = 0.031). Despite the reduction in V[Combining Dot Above]O2peak, cycling economy (p = 0.17) did not differ pre-EIMD and post-EIMD. These findings indicate that EIMD reduced peak aerobic exercise capacity to an extent that could result in meaningful reductions in exercise performance. The reduction is likely attributable to a combination of reduced strength, earlier accumulation of lactic acid, and heightened muscle pain during exercise.  相似文献   

17.
We investigated, in 50 recreational male ultrarunners, the changes in body mass, selected hematological and urine parameters, and fluid intake during a 100-km ultramarathon. The athletes lost (mean and SD) 2.6 (1.8) % in body mass (p < 0.0001). Running speed was significantly and negatively related to the change in body mass (p < 0.05). Serum sodium concentration ([Na?]) and the concentration of aldosterone increased with increasing loss in body mass (p < 0.05). Urine-specific gravity increased (p < 0.0001). The change in body mass was significantly and negatively related to postrace serum [Na?] (p < 0.05). Fluid intake was significantly and positively related to both running speed (r = 0.33, p = 0.0182) and the change in body mass (r = 0.44, p = 0.0014) and significantly and negatively to both postrace serum [Na?] (r = -0.42, p = 0.0022) and the change in serum [Na?] (r = -0.38, p = 0.0072). This field study showed that recreational, male, 100-km ultramarathoners dehydrated as evidenced by the decrease in >2 % body mass and the increase in urine-specific gravity. Race performance, however, was not impaired because of the loss in body mass. In contrast, faster athletes lost more body mass compared with slower athletes while also drinking more. The concept that a loss of >2% in body mass leads to dehydration and consequently impairs endurance performance must be questioned for ultraendurance athletes competing in the field. For practical applications, a loss in body mass during a 100-km ultramarathon was associated with a faster running speed.  相似文献   

18.
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.  相似文献   

19.
Titin, a sarcomeric giant protein, plays crucial roles in muscle assembly, elasticity and stability. Little is known about titin adaptation to endurance exercise. We studied the effects of endurance training on titin expression in mouse gastrocnemius muscles (MGM). Sixty-three ten-week-old male Swiss mice were divided into seven groups. Four groups were composed of untrained control animals (C0, C15, C30, C45) instead the other three included mice trained for 15 (T15), 30 (T30) and 45 (T45) days by treadmill. The training protocol was mainly aerobic, characterized by moderate-intensity, rhythmic and continuous exercises. Titin expression was determined by immunohistochemistry on MGM sections. Results revealed a significant reduction in body weight of the T45 mice and a significant increase in titin expression (% titin immunoreactivity median [range] = 41.11 [20-60] vs. 30.00 [10-50]). It is postulated that the up-regulation of titin expression is an adaptative mechanism to increase muscle elasticity and stability in response to the high number of stretch-shorten cycles during endurance training. Such a mechanism may be important for minimizing muscle energy consumption and improving performance during running.  相似文献   

20.
In a military field artillery trial, the effects of 8 days of sustained manual work and partial sleep loss on isometric right hand grip strength and upper and lower body anaerobic power (using the Wingate test) was investigated in 25 healthy young male soldiers. During the trial, the physical activity of each subject was essentially identical except that an experimental group (n = 18) manually handled a large quantity of artillery shells (weighing 45 kg) and charges (13 kg), whilst a control group (n = 7) merely simulated manual handling activities and did no lifting or loading of shells. The daily amount of sleep obtained by each group was similar (3 to 4 hours), as were their activity patterns and food and fluid intake. Isometric right hand grip strength for both groups fell progressively during the trial and did not return to pre-trial levels during 3 days of recovery. At the end of the 8 day trial, there were statistically significant reductions in the body weight (1.9%, p less than 0.001), % body fat (7.1%, p less than 0.001) and upper body mean power (7.3%, p less than 0.01) of the experimental group but not in the controls. Lower body peak and mean power were significantly increased at the end of the trial in both the experimental (14.7%, p less than 0.001 and 17.0%, p less than 0.001 respectively) and control (14.3%, p less than 0.01 and 15.0%, p less than 0.05 respectively) groups. Lower body power decrease was significantly increased (18.1%, p less than 0.05) in the experimental group but not in the controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号