首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
UV-A (320-400 nm) and UV-B (280-320 nm) radiation causes damage to DNA and other biomolecules through reactions induced by different endogenous or exogenous photosensitizers. Lumazines are heterocyclic compounds present in biological systems as biosynthetic precursors and/or products of metabolic degradation. The parent and unsubstituted compound called lumazine (pteridine-2,4(1,3H)-dione; Lum) is able to act as photosensitizer through electron transfer-initiated oxidations. To get further insight into the mechanisms involved, we have studied in detail the oxidation of 2'-deoxyadenosine 5'-monophosphate (dAMP) photosensitized by Lum in aqueous solution. After UV-A or UV-B excitation of Lum and formation of its triplet excited state ((3)Lum*), three reaction pathways compete for the deactivation of the latter: intersystem crossing to singlet ground state, energy transfer to O(2), and electron transfer between dAMP and (3)Lum* yielding the corresponding pair of radical ions (Lum˙(-) and dAMP˙(+)). In the following step, the electron transfer from Lum˙(-) to O(2) regenerates Lum and forms the superoxide anion (O(2)˙(-)), which undergoes disproportionation into H(2)O(2) and O(2). Finally dAMP˙(+) participates in subsequent reactions to yield products.  相似文献   

2.
Photoinduced electron transfer (PET) is the most common mechanism proposed to account for quenching of fluorophores. Herein, the intrinsic fluorescence of dapoxetine (DPX) hydrochloride is in the “OFF” state, owing to the deactivation effect of PET. When the amine moiety is protonated, the fluorescence is restored. Protonation of the nitrogen atom of the tertiary amine moiety in DPX leads to “ON” state of fluorescence due to hindrance of the deactivating effect of PET by protonation of the amine moiety. This permits specific and sensitive determination of DPX in human plasma [lower limit of quantification (LLOQ) = 30.0  ng mL 1 ]. The suggested method adopts protonation of DPX using 0.25 M hydrochloric acid in anionic micelles [6.94 mM sodium dodecyl sulfate (SDS)] leads to a marked enhancement of DPX-fluorescence, after excitation at 290 nm.  相似文献   

3.
In cell suspensions of Pseudomonas carboxydovorans pulsed with lithotrophic substrates (CO or H2) in the presence of oxygen, formation of reduced pyridine nucleotides and of ATP could be demonstrated using the bioluminescent assay. Experiments employing base-acid transition, an uncoupler and inhibitors of ATPase or electron transport enabled us to propose a model for the formation of NAD(P)H in chemolithotrophically growing P. carboxydovorans.The protonophor FCCP (carbonly-p-trifluormethoxyphenylhydrazon) inhibited both, formation of NAD(P)H and of ATP. In the absence of oxygen, a chemical potential imposed by base-acid transition resulted in the formation of NAD(P)H and ATP when electrogenic substrates (CO or H2) were present. This suggests proton motive force-driven NAD(P)H formation. The proton motive force was generated by oxidation of substrate, and not by ATP hydrolysis, as obvious from NAD(P)H formation during inhibition of ATP synthesis by oligomycin and N,N-dicyclohexylcarbodiimide.That the CO-born electrons are transferred via the ubiquinone 10-cytochrome b region to NADH dehydrogenase functioning in the reverse direction, was indicated by inhibition of NAD(P)H formation by HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide) and rotenone, and by resistance to antimycin A.We conclude that in P. carboxydovorans, growing with CO or H2, electrons and a proton motive force, generated by respiration, are required to drive an reverse electron transfer for the formation of reduced pyridine nucleotides.Abbreviations CODH carbon monoxide dehydrogenase - DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl-p-trifluormethoxyphenylhydrazon - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - pmf proton motive force  相似文献   

4.
FTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination. In the photostationary state, part of the enzyme population has heme a(3) oxidized and heme a reduced. In MV-CO, the frequency of the stretch mode of CO bound to ferrous heme a(3) decreases from 1965.3 cm(-1) at pH* 相似文献   

5.
E G Alexov  M R Gunner 《Biochemistry》1999,38(26):8253-8270
Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground (all neutral), P+QA-, P+QB-, P0QA-, and P0QB- states. The calculated proton binding going from ground to other oxidation states and the free energy of electron transfer from QA-QB to form QAQB- (DeltaGAB) compare well with experiment from pH 5 to pH 11. At pH 7 DeltaGAB is measured as -65 meV and calculated to be -80 meV. With fixed protein positions as in standard electrostatic calculations, DeltaGAB is +170 meV. At pH 7 approximately 0.2 H+/protein is bound on QA reduction. On electron transfer to QB there is little additional proton uptake, but shifts in side chain protonation and position occur throughout the protein. Waters in channels leading from QB to the surface change site occupancy and orientation. A cluster of acids (GluL212, AspL210, and L213) and SerL223 near QB play important roles. A simplified view shows this cluster with a single negative charge (on AspL213 with a hydrogen bond to SerL233) in the ground state. In the QB- state the cluster still has one negative charge, now on the more distant AspL210. AspL213 and SerL223 move so SerL223 can hydrogen bond to QB-. These rearrangements plus other changes throughout the protein make the reaction energetically favorable.  相似文献   

6.
A novel tridentating ligand containing a single ionizable proton was designed for studying proton coupled electron transfer. The ligand was synthesized by derivatizing 2,2′-bipyridine at the 6-position with benzimidazole (bpy-bzimH), and it was used to prepare the compound [Ru(bpy-bzimH)2](PF6)2. Cyclic voltammetry was used to characterize the redox behavior in an aprotic (0.1 M TBAH-CH2Cl2) and protic (1:1 acetonitrile-water buffered solutions) solvent conditions where the latter was employed to characterize the pH-dependence of the Ru(III/II) couple. The redox potential as a function of pH was plotted and reveals a one-proton/one-electron transfer in two separate pH regions (1.39-2.58, and 5.92-7.97), while a two-proton/one-electron process was exhibited between 2.58 and 5.92.  相似文献   

7.
Lepp H  Svahn E  Faxén K  Brzezinski P 《Biochemistry》2008,47(17):4929-4935
Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.  相似文献   

8.
The photophysical behavior of two Os(II) complexes having a bipyridine ligand with anthracene attached directly to the bipyridine (4-(9-anthryl)-2,2'-bipyridine, bpy-AN) is reported. The two complexes [(bpy)2Os(bpy-AN)]2+ and [(bpy-AN)2Os(CO)Br]+ have (3)MLCT excited states that differ in energy by less than 800 cm(-1). Despite this fact, the observed photophysical behavior of the two complexes is entirely different. The complex with the higher energy 3MCLT state, [(bpy-AN)2Os(CO)Br]+, is nonemissive at room temperature, but has a long lived excited state that is localized on the 3(pi-pi*) state of the anthracene substituent. The other complex, [(bpy)2Os(bpy-AN)]2+, exhibits emission at room temperature and has a transient absorption spectrum that is consistent with a localized 3MLCT state. The excited state decay behavior of the two complexes can be fit well assuming a model in which noninteracting 3MLCT and 3(pi-pi*) states are in equilibrium.  相似文献   

9.
The coupled motion of electrons and protons occurs in many proteins. Using appropriate tools for calculation, the three-dimensional protein structure can show how each protein modulates the observed electron and proton transfer reactions. Some of the assumptions and limitations involved in calculations that rely on continuum electrostatics to calculate the energy of charges in proteins are outlined. Approaches that mix molecular mechanics and continuum electrostatics are described. Three examples of the analysis of reactions in photosynthetic reaction centers are given: comparison of the electrochemistry of hemes in different sites; analysis of the role of the protein in stabilizing the early charge separated state in photosynthesis; and calculation of the proton uptake and protein motion coupled to the electron transfer from the primary (Q(A)) to secondary (Q(B)) quinone. Different mechanisms for stabilizing intra-protein charged cofactors are highlighted in each reaction.  相似文献   

10.
Mileni M  Haas AH  Mäntele W  Simon J  Lancaster CR 《Biochemistry》2005,44(50):16718-16728
Quinol:fumarate reductase (QFR) is the terminal enzyme of anaerobic fumarate respiration. This membrane protein complex couples the oxidation of menaquinol to menaquinone to the reduction of fumarate to succinate. Although the diheme-containing QFR from Wolinella succinogenes is known to catalyze an electroneutral process, its three-dimensional structure at 2.2 A resolution and the structural and functional characterization of variant enzymes revealed locations of the active sites that indicated electrogenic catalysis. A solution to this apparent controversy was proposed with the so-called "E-pathway hypothesis". According to this, transmembrane electron transfer via the heme groups is strictly coupled to a parallel, compensatory transfer of protons via a transiently established pathway, which is inactive in the oxidized state of the enzyme. Proposed constituents of the E-pathway are the side chain of Glu C180 and the ring C propionate of the distal heme. Previous experimental evidence strongly supports such a role of the former constituent. Here, we investigate a possible heme-propionate involvement in redox-coupled proton transfer by a combination of specific (13)C-heme propionate labeling and Fourier transform infrared (FTIR) difference spectroscopy. The labeling was achieved by creating a W. succinogenes mutant that was auxotrophic for the heme-precursor 5-aminolevulinate and by providing [1-(13)C]-5-aminolevulinate to the medium. FTIR difference spectroscopy revealed a variation on characteristic heme propionate vibrations in the mid-infrared range upon redox changes of the distal heme. These results support a functional role of the distal heme ring C propionate in the context of the proposed E-pathway hypothesis of coupled transmembrane electron and proton transfer.  相似文献   

11.
We described a new approach to sensing of carbon dioxide based on photoinduced electron transfer (PET) quenching. Fluorophores like naphthalene and anthracene are known to be quenched by unprotonated amines by the PET mechanism. We examined the fluorescence spectral properties of two amine-containing fluorophores, 1-naphthylmetylamine (NMA) and 9-ethanolaminomethylanthracene (EAA). When dissolved in an organic solvent, both fluorophores displayed increased intensity when equilibrated with gaseous carbon dioxide. In the case of NMA, we found that the mean lifetime increased with increasing partial pressures of CO(2). The intensity and lifetime changes of NMA are completely reversible when CO(2) is removed by purging with argon. Our results are consistent with decreased quenching by the covalently linked amino groups when CO(2) is dissolved in the solution. At present, we are not certain whether the increased intensity is due to protonation of the amino groups or to carbamate formation. In either event, these results suggest that CO(2) can be detected directly using amine-containing fluorophores without the use of bicarbonate and a pH-sensitive fluorophore.  相似文献   

12.
 The singlet state of stilbene-4,4′-dicarboxamide can serve as a fluorescent probe of both DNA conformation and electron transfer. Covalent incorporation of the stilbene-dicarboxamide into DNA structures with restricted conformational mobility results in inhibition of stilbene isomerization and an increase in its fluorescence quantum yield and lifetime. The fluorescence of stilbenedicarboxamide is selectively quenched by proximate guanine, but not by the three other DNA nucleobases. Selective quenching occurs via an electron transfer mechanism in which stilbene serves as the electron acceptor and guanine as the electron donor. Kinetic analysis of the distance dependence of electron transfer in stilbene-bridged hairpins suggests that duplex DNA is more effective than proteins as a medium for electron transfer, but that it does not function as a molecular wire. Received, accepted: 5 January 1998  相似文献   

13.
The shape of the EPR spectrum of the triplet state of photosystem II reaction centers with a singly reduced primary acceptor complex QAFe2+ was studied. It was shown that the spectroscopic properties do not significantly change when the relaxation of the primary acceptor is accelerated and when the magnetic interaction between the reduced quinone molecule QA and the nonheme iron ion Fe2+ is disrupted. This observation confirmed the earlier conclusion that the anisotropy of the quantum yield of the triplet state is the main cause of the anomalous shape of the EPR spectrum. A scheme of primary processes in photosystem II that is consistent with the observed properties of the EPR spectrum of the triplet state is discussed.  相似文献   

14.
Recent time-resolved optical absorption studies in our laboratory have indicated that the putative peroxy intermediate formed during the reduction of dioxygen to water by cytochrome oxidase (P(R)) is a pH-dependent mixture of compound A, P, and F [Van Eps, N., et al. (2003) Biochemistry 42, 5065-5073]. This conclusion is based on a kinetic analysis of flow-flash time-resolved data using a unidirectional sequential scheme with five apparent lifetimes. To account for this observation, we propose a more complex kinetic model that consists of branched pathways, one branch producing the 607 nm P form and the other the 580 nm F form. The two pathways are interconnected, and the rate of exchange between the two is pH-dependent. The kinetic analysis and testing of the new model involves a novel algebraic approach which transforms the intermediates of the complex branched scheme into intermediates comparable to those derived on the basis of a sequential model. The branched model reproduces the experimental data very well and is consistent with a variety of experimental observations. The two branches may arise from two structurally different CO or O(2) conformers or protein conformers, which could lead to different accessibilities of proton donors to the binuclear center.  相似文献   

15.
Using Fourier transform infrared spectroscopy (FTIR) we have monitored the changes in the protein structure following photoinduced electron transfer from Ru(bpy)(3)(2+) covalently attached to cysteine 334 on the surface of cytochrome P450cam (CYP101). The FTIR difference spectra between the oxidized and reduced form indicate changes in a salt link and the secondary structure (alpha-helix and turn regions). Photoreduction was carried out in the presence of carbon monoxide in order to prove the reduction of the heme iron by means of the appearance of the characteristic CO stretch vibration infrared band at 1940 cm(-1) for the camphor-bound protein. This infrared band has also been used to estimate electron transfer rates. The observed rates depend on the protein concentration, indicating that intermolecular electron transfer occurs between the labeled molecules.  相似文献   

16.
Olsson MH  Sharma PK  Warshel A 《FEBS letters》2005,579(10):2026-2034
Gaining a detailed understanding of the molecular nature of the redox coupled proton transfer in cytochrome c oxidase (COX) is one of the challenges of modern biophysics. The present work addresses this by integrating approaches for simulations of proton transport (PTR) and electron transfer (ET). The resulting method converts the electrostatic energies of different charge configurations and reorganization energies to free-energy profiles for different PTR and ET pathways. This approach provides for the first time a tool to study the actual activation barriers and kinetics of different feasible PTR processes in the cycle of COX. Using this tool, we explore the PTR through the bottleneck water molecules. It is found that a stepwise PTR along this commonly assumed path leads to far too high barriers and is, thus, inconsistent with the observed kinetics. Furthermore, the simulated free-energy profile does not provide a simple gating mechanism. Fortunately, we obtain reasonable kinetics when we consider a PTR that involves a concerted transfer of protons to and from E286. Finally, semi-qualitative considerations of the forward and backward barriers point toward open questions about the actual gating process and offer a feasible pumping mechanism. Although further studies are clearly needed, we believe that our approach offers a general and effective tool for correlating the structure of COX with its function.  相似文献   

17.
The photophysical properties of oxotitanium(IV)meso-tetra(4-sulfonatophenyl) porphyrin (O=Ti(IV)TSPP) have been investigated in water and methanol by laser spectroscopic techniques. The fluorescence emission spectrum of O=Ti(IV)TSPP in methanol exhibits two strong emission bands at 610 and 670 nm at room temperature with the decay time of ca. 310 +/- 10 ps and the rise time shorter than 30 ps, in contrast to the extremely weak emission with the decay time of ca. 27 +/- 4 ps in water, indicating that the fluorescence emissive states are different in the two solvents as supported by the solvent dependences of the excitation spectrum. The transient Raman spectra of O=Ti(IV)TSPP in water has been observed to exhibit a remarkable enhancement of phenyl-related mode at 1599 cm(-1), while in methanol, the Raman frequencies of the porphyrin skeletal modes (upsilon2 and upsilon4) are down-shifted without any apparent enhancement of the phenyl-related mode, indicating different interactions of the two solvents with the excited O=Ti(IV)TSPP. These Raman studies reveal that methanol molecule interacts with the photoexcited O=Ti(IV)TSPP more strongly than water, forming the exciplex, O=Ti(IV)TSPP(MeOH)*, suggesting that the two different emissive states are the singlet Franck-Condon state and the exciplex state in methanol and water, respectively. A broad triplet transient absorption of O=Ti(IV)TSPP has been also observed at 480 nm in water as well as in methanol, which is decreased upon addition of methyl viologen (MV2+) with appearance of a new absorption band at 620 nm. This indicates that the photoinduced electron transfer (PET) takes place from the porphyrin to MV2+ in both solvents. The kinetic analysis of the transient absorption band exhibits the PET rate constants of 4.76 x 10(5) s(-1) and 3,03 x 10(4) s(-1) in methanol and water, respectively. All these results infer that the PET takes place from the (d,pi) CT state and the triplet state of the excited porphyrin in methanol and water, respectively.  相似文献   

18.
Cytochrome oxidase: pathways for electron tunneling and proton transfer   总被引:1,自引:0,他引:1  
 Electrons from cytochrome c, the substrate of cytochrome oxidase, a redox-linked proton pump, are accepted by CuA in subunit II. From there they are transferred to the proton pumping machinery in subunit I, cytochrome a and cytochrome a 3–CuB. The reduction of the latter site, which is the dioxygen reducing unit, is coupled to proton uptake. Dioxygen reduction involves a peroxide and a ferryl ion intermediate, and it is the transition between these and back to the resting oxidized enzyme that are coupled to proton pumping. The X-ray structures suggest electron–transfer pathways that can account for the observed rates provided that the reorganization energies are small. They also reveal two proton-transfer pathways, and mutagenesis experiments have shown that one is used for proton uptake during the initial reduction of cytochrome a 3–CuB, whereas the other mediates transfer of the pumped protons. Received: 23 March 1998 / Accepted: 11 May 1998  相似文献   

19.
20.
Based on femtosecond time-resolved spectroscopy and single photon timing experiments, intramolecular photoinduced charge transfer has been investigated in two systems containing a peryleneimide chromophore (P) and thiophene (T) groups. The first compound bearing a single thiophene ring (PT1) is used as model and shows a behavior similar to P, studied previously, while in the compound with two thiophene rings attached (PT2) electron transfer from the thiophene donor to the peryleneimide acceptor is observed in benzonitrile. Femtosecond fluorescence upconversion and femtosecond transient absorption experiments in benzonitrile indicate that this ion-pair state formation occurs in 19 ps. This ion-pair state then decays with two time constants of 1400 and 820 ps, probably corresponding to different conformations of the thiophene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号