共查询到20条相似文献,搜索用时 0 毫秒
1.
Parchmann CJ McBride JM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(12):3378-3384
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance. 相似文献
2.
Muehlbauer T Roth R Mueller S Granacher U 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(8):2228-2234
A study was designed to investigate the intra and intersession reliability during 1-leg standing recorded from a computerized balance platform. Thirty-nine healthy young men (n = 17, age range: 20-30 years) and women (n = 22, age range: 21-28 years) performed 3 testing sessions, with the second session 30 minutes (intrasession comparison) and the third session 1 week (intersession comparison) after the initial testing session. Within each testing session, participants completed 3 trials of 1-leg standing with their dominant leg. Reliability statistics were calculated using the mean of all 3 trials during each session for 6 balance measures (i.e., total displacements of the center of pressure [CoP], the CoP displacements in mediolateral and anterior-posterior directions, and the CoP speed and CoP area and their SD). Test-retest reliability was examined calculating both, intraclass correlation coefficient (ICC) with 95% confidence interval (95% CI) and Bland-Altman plots. In both sexes and irrespective of balance measure, ICC values were ≥0.75 except for 1 parameter in men. This indicates an excellent intra and intersession reliability. Bland-Altman plots confirmed these findings by showing that only 1 or 2 (4.5-11.8%) of the data points were beyond the 95% CI. Practitioners and clinicians are provided with a posturographic test setup that proved to be reliable. Researchers can use these data to identify the range in which the true value of a subject's score lies and estimate a priori sample sizes. 相似文献
3.
Tagesson SK Kvist J 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(3):801-807
The purpose of the present study was to develop a systematic procedure for the establishment of 1 repetition maximum (1RM) in order to describe an easily accessible test procedure that is applicable for physical therapists and athletic trainers who manage strength training for healthy individuals and patients. Another purpose was to investigate the intra- and interrater reliability of 1RM of squat on 1 leg and seated knee extension on 1 leg. Estimates of leg strength and ratings of perceived exertion formed the basis of the amount of load selected. The reliability of the procedure was assessed by a test-retest design. One RM was established for 16 and 27 healthy individuals, for squat and knee extension, respectively. The intrarater reliability of 1RM of squat on 1 leg was questionable (intraclass correlation [ICC] 0.64, measurement error 13.1 kg). The interrater reliability of 1RM of squat on 1 leg was clinically acceptable (ICC 0.94, measurement error 5.2 kg). The intrarater and interrater reliability of 1RM of seated knee extension on 1 leg was clinically acceptable (ICC 0.90, measurement error 5.1 kg and ICC 0.96, measurement error 3.2 kg, respectively). In conclusion, both exercises can be used to determine the load in exercise programs. In addition, seated knee extension may be used to evaluate strength. In contrast, squat on 1 leg is more uncertain to use at assessments between different days, which may be due to the complexity of this exercise. The test, performed in the described manner, is suitable for physical therapists, athletic trainers, and strength and conditioning coaches in clinical practice working with strength training and rehabilitation. 相似文献
4.
RG Lockie AB Schultz SJ Callaghan CA Jordan TM Luczo MD Jeffriess 《Biology of sport / Institute of Sport》2015,32(1):41-51
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes. 相似文献
5.
McKerrow JH Bhargava V Hansell E Huling S Kuwahara T Matley M Coussens L Warren R 《Molecular medicine (Cambridge, Mass.)》2000,6(5):450-460
BACKGROUND: Proteases facilitate several steps in cancer progression. To identify proteases most suitable for drug targeting, actual enzyme activity and not messenger RNA levels or immunoassay of protein is the ideal assay readout. MATERIALS AND METHODS: An automated microtiter plate assay format was modified to allow detection of all four major classes of proteases in tissue samples. Fifteen sets of colorectal carcinoma biopsies representing primary tumor, adjacent normal colon, and liver metastases were screened for protease activity. RESULTS: The major proteases detected were matrix metalloproteases (MMP9, MMP2, and MMP1), cathepsin B, cathepsin D, and the mast cell serine proteases, tryptase and chymase. Matrix metalloproteases were expressed at higher levels in the primary tumor than in adjacent normal tissue. The mast cell proteases, in contrast, were at very high levels in adjacent normal tissue, and not detectable in the metastases. Cathepsin B activity was significantly higher in the primary tumor, and highest in the metastases. The major proteases detected by activity assays were then localized in biopsy sections by immunohistochemistry. Mast cell proteases were abundant in adjacent normal tissue, because of infiltration of the lamina propria by mast cells. Matrix metalloproteases were localized to the tumor cells themselves; whereas, cathepsin B was predominantly expressed by macrophages at the leading edge of invading tumors. Although only low levels of urinary plasminogen activator were detected by direct enzyme assay, immunohistochemistry showed abundant protein within the tumor. CONCLUSIONS: This analysis, surveying all major classes of proteases by assays of activity rather than immunolocalization or in situ hybridization alone, serves to identify proteases whose activity is not completely balanced by endogenous inhibitors and which may be essential for tumor progression. These proteases are logical targets for initial efforts to produce low molecular weight protease inhibitors as potential chemotherapy. 相似文献
6.
Dean C Dunning FM Liu H Bomba-Warczak E Martens H Bharat V Ahmed S Chapman ER 《Molecular biology of the cell》2012,23(9):1715-1727
The synaptotagmins (syts) are a family of molecules that regulate membrane fusion. There are 17 mammalian syt isoforms, most of which are expressed in the brain. However, little is known regarding the subcellular location and function of the majority of these syts in neurons, largely due to a lack of isoform-specific antibodies. Here we generated pHluorin-syt constructs harboring a luminal domain pH sensor, which reports localization, pH of organelles to which syts are targeted, and the kinetics and sites of exocytosis and endocytosis. Of interest, only syt-1 and 2 are targeted to synaptic vesicles, whereas other isoforms selectively recycle in dendrites (syt-3 and 11), axons (syt-5, 7, 10, and 17), or both axons and dendrites (syt-4, 6, 9, and 12), where they undergo exocytosis and endocytosis with distinctive kinetics. Hence most syt isoforms localize to distinct secretory organelles in both axons and dendrites and may regulate neuropeptide/neurotrophin release to modulate neuronal function. 相似文献
7.
A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta
Lee SJ Kelley BS Damasceno CM St John B Kim BS Kim BD Rose JK 《Molecular plant-microbe interactions : MPMI》2006,19(12):1368-1377
Complex suites of proteins that are secreted by plants and phytopathogens into the plant apoplast play crucial roles in surveillance, assault, defense, and counter-defense. High-throughput genome-scale strategies are being developed to better understand the nature of these "secretomes" and the identity of pathogen-derived effector proteins that subvert plant defenses and promote pathogenicity. Although combined bioinformatic and experimental approaches recently have provided comprehensive coverage of secreted proteins from bacterial phytopathogens, far less is known about the secretomes and batteries of effectors of eukaryotic phytopathogens; notably fungi and oomycetes. The yeast secretion trap (YST) represents a potentially valuable technique to simultaneously target pathogen and host secretomes in infected plant material. A YST screen, using a new vector system, was applied to study the interaction between tomato (Solanum lycopersicum) and the oomycete Phytophthora infestans, revealing sets of genes encoding secreted proteins from both pathogen and host. Most of those from the oomycete had no identifiable function and were detectable in planta only during pathogenesis, underlining the value of YST as a tool to identify new candidate effectors and pathogenicity factors. In addition, the majority of the P. infestans proteins had homologs in the genomes of the related oomycetes R. sojae and P. ramorum. 相似文献
8.
9.
Stachelek SJ Tuft RA Lifschitz LM Leonard DM Farwell AP Leonard JL 《The Journal of biological chemistry》2001,276(38):35652-35659
Recycling endosomes in astrocytes show hormone-regulated, actin fiber-dependent delivery to the endosomal sorting pool. Recycling vesicle trafficking was followed in real time using a fusion protein composed of green fluorescent protein coupled to the 29-kDa subunit of the short-lived, membrane-bound enzyme type 2 deiodinase. Primary endosomes budded from the plasma membrane and oscillated near the cell periphery for 1-4 min. The addition of thyroid hormone triggered the processive, centripetal movement of the recycling vesicle in linear bursts at velocities of up to 200 nm/s. Vesicle migration was hormone-specific and blocked by inhibitors of actin polymerization and myosin ATPase. Domain mapping confirmed that the hormone-dependent vesicle-binding domain was located at the C terminus of the motor. In addition, the interruption of normal dimerization of native myosin 5a monomers inactivated vesicle transport, indicating that single-headed myosin 5a motors do not transport cargo in situ. This is the first demonstration of processive hormone-dependent myosin 5a movement in living cells. 相似文献
10.
11.
Suk Hooh Ohn Woo-Kyoung Yoo Deog Young Kim Seungho Ahn Bora Jung Ikjun Choi Nam Jae Lee Kwang-Ik Jung 《Journal of electromyography and kinesiology》2013,23(2):501-507
The aim of the present study was to measure the muscle-contraction patterns of the hemiplegic upper limb using electromyography (EMG) and to investigate the relationship between muscle co-contraction and functional recovery in stroke patients presenting with synergy and spasticity. The muscle-contraction patterns of the upper limb of 12 chronic stroke patients and 10 normal volunteers were measured, and the co-contraction in the distal and proximal muscles was simultaneously quantified, while the participants performed hand-grasp and shoulder flexion tasks. The spasticity and hemiplegic arm function were evaluated, respectively, on a modified Ashworth scale (MAS) and by means of Fugl-Meyer motor assessment (FMA). The correlation between the MAS and FMA values was analyzed.Increased co-contraction (66–555%) was observed in both the proximal and distal upper limbs, and was positively correlated with spasticity of the elbow flexor (r = 0.944 on shoulder flexion, r = 0.741 on hand grasping, p < 0.01) and negatively correlated with functional recovery of the upper limb (r = ?0.670 ~ ?0.884, p < 0.05). Specific movement patterns influenced by synergy and spasticity were confirmed by EMG. These results might prove useful to the formulation of appropriate management plans such as those involving botulinum toxin injection or nerve block. 相似文献
12.
A Lekkerkerker J Wellink P Yuan J van Lent R Goldbach A B van Kammen 《Journal of virology》1996,70(8):5658-5661
Cell-to-cell movement of cowpea mosaic virus particles in plants takes place with the help of tubules that penetrate presumably modified plasmodesmata. These tubules, which are built up by the virus-encoded 48-kDa movement protein (MP), are also formed on single protoplast cells. To determine whether the MP contains different functional domains, the effect of mutations in its coding region was studied. Mutations between amino acids 1 and 313 led to complete abolishment of the tubule-forming capacity, while a deletion in the C-terminal region resulted in tubules that could not take up virus particles. From these observations, it is concluded that the MP contains at least two distinct domains, one that is involved in tubule formation and that spans amino acids 1 and 313 and a second that is probably involved in the incorporation of virus particles in the tubule and that is located in the C terminus between amino acids 314 and 331. 相似文献
13.
Neuronal circuit development and function require proper synapse formation and maintenance. Genetic screens are one powerful method to identify the mechanisms shaping synaptic development and stability. However, genes with essential roles in non-neural tissues may be missed in traditional loss-of-function screens. In an effort to circumvent this limitation, we used neuron-specific RNAi knock down in Drosophila and assayed the formation, growth, and maintenance of the neuromuscular junction (NMJ). We examined 1970 Drosophila genes, each of which has a conserved ortholog in mammalian genomes. Knock down of 158 genes in post-mitotic neurons led to abnormalities in the neuromuscular system, including misapposition of active zone components opposite postsynaptic glutamate receptors, synaptic terminal overgrowth and undergrowth, abnormal accumulation of synaptic material within the axon, and retraction of synaptic terminals from their postsynaptic targets. Bioinformatics analysis demonstrates that genes with overlapping annotated function are enriched within the hits for each phenotype, suggesting that the shared biological function is important for that aspect of synaptic development. For example, genes for proteasome subunits and mitotic spindle organizers are enriched among the genes whose knock down leads to defects in synaptic apposition and NMJ stability. Such genes play essential roles in all cells, however the use of tissue- and temporally-restricted RNAi indicates that the proteasome and mitotic spindle organizers participate in discrete aspects of synaptic development. In addition to identifying functional classes of genes shaping synaptic development, this screen also identifies candidate genes whose role at the synapse can be validated by traditional loss-of-function analysis. We present one such example, the dynein-interacting protein NudE, and demonstrate that it is required for proper axonal transport and synaptic maintenance. Thus, this screen has identified both functional classes of genes as well as individual candidate genes that are critical for synaptic development and will be a useful resource for subsequent mechanistic analysis of synapse formation and maintenance. 相似文献
14.
《Epigenetics》2013,8(7):701-709
Breast cancer (BC) is a disease with diverse tumor heterogeneity, which challenges conventional approaches to develop biomarkers for early detection and prognosis. To identify effective biomarkers, we performed a genome-wide screen for functional methylation changes in BC, i.e., genes silenced by promoter hypermethylation, using a functionally proven gene expression approach. A subset of candidate hypermethylated genes were validated in primary BCs and tested as markers for detection and prognosis prediction of BC. We identified 33 cancer specific methylated genes and, among these, two categories of genes: (1) highly frequent methylated genes that detect early stages of BC. Within that category, we have identified the combination of NDRG2 and HOXD1 as the most sensitive (94%) and specific (90%) gene combination for detection of BC; (2) genes that show stage dependent methylation frequency pattern, which are candidates to help delineate BC prognostic signatures. For this category, we found that methylation of CDO1, CKM, CRIP1, KL and TAC1 correlated with clinical prognostic variables and was a significant prognosticator for poor overall survival in BC patients. CKM [Hazard ratio (HR) = 2.68] and TAC1 (HR = 7.73) were the strongest single markers and the combination of both (TAC1 and CKM) was associated with poor overall survival independent of age and stage in our training (HR = 1.92) and validation cohort (HR = 2.87). Our study demonstrates an efficient method to utilize functional methylation changes in BC for the development of effective biomarkers for detection and prognosis prediction of BC. 相似文献
15.
Signal transduction pathways activated by Toll-like Receptors and the IL-1 family of cytokines are fundamental to mounting an innate immune response and thus to clearing pathogens and promoting wound healing. Whilst mechanistic understanding of the regulation of innate signalling pathways has advanced considerably in recent years, there are still a number of critical controllers to be discovered. In order to characterise novel regulators of macrophage inflammation, we have carried out an extensive, cDNA-based forward genetic screen and identified 34 novel activators, based on their ability to induce the expression of cxcl2. Many are physiologically expressed in macrophages, although the majority of genes uncovered in our screen have not previously been linked to innate immunity. We show that expression of particular activators has profound but distinct impacts on LPS-induced inflammatory gene expression, including switch-type, amplifier and sensitiser behaviours. Furthermore, the novel genes identified here interact with the canonical inflammatory signalling network via specific mechanisms, as demonstrated by the use of dominant negative forms of IL1/TLR signalling mediators. 相似文献
16.
Kinematic assessments of the upper limb during activities of daily living (ADLs) are used as an objective measure of upper limb function. The implementation of ADLs varies between studies; whilst some make use of props and define a functional target, others use simplified tasks to simulate the movements in ADLs. Simulated tasks have been used as an attempt to reduce the large movement variability associated with the upper limb. However, it is not known whether simulated tasks replicate the movements required to complete ADLs or reduce movement variability. The aim of this study is to evaluate the use of simulated tasks in upper limb assessments in comparison to functional movements. Therefore answering the following questions: Do simulated tasks replicate the movements required of the upper limb to perform functional activities? Do simulated tasks reduce intra- and inter-subject movement variability? Fourteen participants were asked to perform five functional tasks (eat, wash, retrieve from shelf, comb and perineal care) using two approaches: a functional and a simulated approach. Joint rotations were measured using an optoelectronic system. Differences in movement and movement variability between functional and simulated tasks were evaluated for the thorax, shoulder, elbow/forearm and wrist rotations. Simulated tasks did not accurately replicate the movements required for ADLs and there were minimal differences in movement variability between the two approaches. The study recommends the use of functional tasks with props for future assessments of the upper limb. 相似文献
17.
Benjamin Bergerot Pierline Tournant Jean-Pierre Moussus Virginie-M. Stevens Romain Julliard Michel Baguette Jean-Christophe Foltête 《Population Ecology》2013,55(1):193-203
Landscape connectivity is a key process for the functioning and persistence of spatially-structured populations in fragmented landscapes. Butterflies are particularly sensitive to landscape change and are excellent model organisms to study landscape connectivity. Here, we infer functional connectivity from the assessment of the selection of different landscape elements in a highly fragmented landscape in the Île-de-France region (France). Firstly we measured the butterfly preferences of the Large White butterfly (Pieris brassicae) in different landscape elements using individual release experiments. Secondly, we used an inter-patch movement model based on butterfly choices to build the selection map of the landscape elements to moving butterflies. From this map, functional connectivity network of P. brassicae was modelled using landscape graph-based approach. In our study area, we identified nine components/groups of connected habitat patches, eight of them located in urbanized areas, whereas the last one covered the more rural areas. Eventually, we provided elements to validate the predictions of our model with independent experiments of mass release-recapture of butterflies. Our study shows (1) the efficiency of our inter-patch movement model based on species preferences in predicting complex ecological processes such as dispersal and (2) how inter-patch movement model results coupled to landscape graph can assess landscape functional connectivity at large spatial scales. 相似文献
18.
Smith FM Vearing C Lackmann M Treutlein H Himanen J Chen K Saul A Nikolov D Boyd AW 《The Journal of biological chemistry》2004,279(10):9522-9531
The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes. 相似文献
19.
《Cell》2023,186(1):162-177.e18