首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The success of Somatic cell nuclear transfer (SCNT) primarily depends on the extent of reprogramming of donor cells genome. The error of reprogramming may lead to inappropriate expression of embryonic genes at any stage of development. Under the present study the relative expression of different genes related to pluripotency (Oct-4 and Nanog), growth factors (IGF-2 and IGF-2R) and DNA methyltransferase gene (Dnmt-1) was evaluated in SCNT embryos at 8–16 cells, morula and blastocyst stages as compared to IVF group. In SCNT, significantly higher degree of relative expression was observed for Oct-4 in morula (1.41) and blastocysts (1.14) as compared to 8–16 cells (referral stage) whereas in IVF, a lower expression was observed at morula (0.82) stage. The expression of Nanog in SCNT embryos was increased significantly in morula (2.23) and decreased subsequently in blastocyst (0.56), whereas it was increased significantly from 8 to 16 cells to morula (1.62) and blastocyst (4.5) of IVF group. The IGF-2 and IGF-2R showed significantly higher expression rates in morula and blastocysts of SCNT (6.56, 5.90 and 1.11, 1.4) and IVF (8.69, 8.25 and 2.96, 3.91) embryos, respectively as compared to referral stage. The expression of Dnmt-1 was significantly higher in SCNT morula (1.29) and blastocyst (1.15) however in IVF, it was similar in 8–16 cells stage and morula but, higher in blastocyst (1.58). The dissimilar pattern of gene expression of SCNT might be a consequence of incomplete reprogramming of donor nucleus which resulted into lower blastocyst rate of SCNT as compared to IVF embryos.  相似文献   

3.
《Theriogenology》2013,79(9):1929-1938
The objective was to investigate the relationship between histone H3 lysine 9 (H3K9) dimethylation (me2) and the histone methyltransferase EHMT2 (also known as G9A) in ovine embryos cloned by somatic cell nuclear transfer (SCNT). Levels of H3K9me2 or EHMT2 were detected (with immunostaining) and compared between SCNT and IVF-derived preimplantation embryos. In one-cell embryos, SCNT zygotes had significantly higher levels of H3K9me2 and EHMT2 than IVF zygotes. In cloned embryos, H3K9me2 remained hypermethylated relative to IVF embryos at two-cell and late developmental stages (morula and blastocyst), with no difference (P > 0.05) between IVF and SCNT embryos in EHMT2 levels from two-cell to blastocyst stages. The EHMT2-specific inhibitor, BIX01294, reduced global H3K9me2 levels in cultured ovine cells or SCNT embryos, but it was not appropriate for somatic cell nuclear transfer because of its high cellular toxicity. We inferred that abnormal H3K9me2 hypermethylation in SCNT embryos may not completely arise from EHMT2 expression error.  相似文献   

4.
5.
Chromosome alterations, such as those affecting telomere erosion, predictably occur with each cell division, others, which involve changes to the expression and replication of the X-chromosome occur at particular stages of development, while those that involve loss or gain of chromosomes occur in a random and so far unpredictable manner. The production of embryos in vitro and by somatic cell nuclear transfer (SCNT) has been associated with altered expression of marker genes on the X-chromosome and an increased incidence of chromosomally abnormal cells during early development. In the case of SCNT embryos chromosome abnormalities may be associated with the nuclear donor cell. Telomere rebuilding subsequent to SCNT appears to vary according to species and type of donor cell used. It is speculated that the rate of telomere erosion and incidence of chromosome abnormalities affects developmental potential of early embryos and may be potential predictors of developmental outcome.  相似文献   

6.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

7.
8.
Bovine oocyte activation is one of the essential elements that determine the success of nuclear transfer and the subsequent development of cloned embryos. Three methods for oocyte activation, including 5 microM ionomycin (5 min, Group 1) alone, ionomycin+1.9 mM 6-dimethylaminopurine (DMAP, 3h, Group 2), and ionomycin+10 microg/ml cycloheximide (CHX, 3h, Group 3) were compared for the development of embryos produced by somatic nuclear transfer (SCNT) to parthenotes and IVF counterparts. At 19-h post-activation/insemination (hpa/hpi), 27.5% of oocytes in Group 2 cleaved and this rate was greater (P<0.05) than other groups (Group 1, 2.1%; Group 3, 3.0%). None of the oocytes in the IVF control group cleaved at 19-22 hpi. At 24 hpa, the rates of cleavage of oocytes in Group 2 (52.1%) were greater (P<0.05) than those in Groups 1 and 3 (7 and 38.3%, respectively). Only six oocytes (3.3%) in the IVF control group cleaved at 24 hpi. The overall cleavage rates of oocytes in Group 2 (85.5%) at 48 hpa were greater (P<0.05) than other treatments, but it did not show any difference when compared with the IVF control group (75.0%). The development rate to two-cell stage embryos of Group 2 was consistently greater at all observation points followed by Groups 3 and 1. Similar results were obtained in SCNT embryos, but the rates of cleavage at 48 hpi and blastocyst development in Group 2 (68.4 and 16.3%, respectively) did not differ from Group 3 (63.0 and 13.1%, respectively). The chromosomal composition in the parthenotes and SCNT embryos differed (P<0.05) among treatments. In Groups 1 and 3, greater percentages of haploid parthenotes (86 and 71%, respectively) were observed. In contrast, 84% of parthenotes in Group 2 had abnormal ploidy (44% polyploid and 40% mixoploid). In the case of SCNT embryos, Groups 1 and 3 had greater percentages of diploid chromosomal sets (77 and 70%, respectively), whereas 54% in Group 2 were polyploid or mixoploid. These results indicate that DMAP treatment after ionomycin greatly increases the developmental rates of parthenotes, but did not differ in blastocyst development compare with CHX treatment. However, DMAP treatment increased the time-dependent cleavage rate to two-cell stage embryos. Further, it greatly enhanced the incidence of chromosomal abnormalities in parthenotes and SCNT embryos. Hence, it is concluded that CHX combined with ionomycin is more desirable than DMAP for oocyte activation during nuclear transfer in cattle.  相似文献   

9.
在马(Equus caballus)的繁殖和非繁殖季节,本研究探讨马扩展型(Ex)和紧凑型(Cp)卵丘-卵母细胞复合体(COCs)卵母细胞的孤雌激活效率。在繁殖季节,探讨马驹和成年马成纤维细胞核移植(SCNT)的成功率。孤雌激活实验结果显示,在繁殖季节,发育到2-细胞、4-细胞和桑椹胚的比例,扩展型(Ex)卵丘-卵母细胞复合体分别是52.8%(19/36)、38.9%(14/36)和5.6%(2/36),紧凑型(Cp)卵丘-卵母细胞复合体分别是47.9%(23/48)、33.3%(16/48)和6.2%(3/48)。在非繁殖季节,发育到2-细胞、4-细胞的比例,扩展型(Ex)分别是37.2%(16/43)和16.3%(7/43),紧凑型(Cp)的比例分别是35.1%(27/77)和11.7%(9/77),都没有获得桑椹胚。同一季节,扩展型(Ex)与紧凑型(Cp)胚胎发育的比率差异不显著(P 0.05),不同季节,两者差异显著(P 0.05)。体细胞核移植实验结果显示,以马驹成纤维细胞作为核供体细胞,胚胎发育到2-细胞、4~8细胞和桑椹胚的比例分别是41.5%(22/53)、33.9%(18/53)和15.1%(8/53),以成年马成纤维细胞作为核供体细胞,比例分别是38.9%(7/18)、22.2%(4/18),没有获得桑椹胚。综上所述,季节和卵丘-卵母细胞复合体(COCs)类型影响马卵母细胞孤雌激活的效率,不同核供体细胞影响克隆胚胎构建的成功率。  相似文献   

10.
11.
Interspecies somatic cell nuclear transfer (iSCNT) has emerged as an important tool for studying nucleo-cytoplasmic interactions and cloning of animals whose oocytes are difficult to obtain. This study was designed to explore the feasibility of employing transgenic fibroblasts as donor cells for iSCNT. The study examined the chromatin morphology, in vitro development, and expression of an enhanced green fluorescent protein (EGFP) gene in porcine- and bovine-cloned embryos produced by iSCNT of fetal fibroblast transfected with a pLNbeta-EGFP retroviral vector. Parthenogenetic and transfected or nontransfected intraspecies SCNT embryos were used as controls for comparison. Analysis of data revealed that xenogenic oocyte was able to reprogram somatic cells of different genus and supports their in vitro development to the blastocyst stage. However, the developmental rates of transgenic iSCNT embryos to the blastocyst stage were significantly lower than those of intraspecies SCNT embryos. The reduction in development rates was however, not due to integration of the transgene as the lower (P < 0.05) development rates of the intraspecies SCNT porcine or bovine embryos did not differ between transgenic and nontransgenic groups. Expression of EGFP was observed in 100% of blastocysts and mosaicism was not observed. Furthermore, after iSCNT of porcine or bovine donor nuclei into xenogenic ooplasm, patterns of nuclear remodeling in reconstructed embryos were similar. In conclusion, our data demonstrated the feasibility of producing transgenic iSCNT embryos. To our knowledge, this is the first report of transgenic cloned embryo production by iSCNT approach. In the future, this may provide a powerful research tool for studying developmental events in domestic animals and provide marked cell lines for other genetic manipulations.  相似文献   

12.

Background

Somatic cell nuclear transfer (SCNT) is a useful biotechnological tool for transgenic animal production using genetically modified somatic cells (GMSCs). However, there are several limitations preventing successful transgenic animal generation by SCNT, such as obtaining proper somatic donor cells with a sufficiently long life span and proliferative capacity for generating GMSCs. Here, we established simian virus 40 large T antigen (SV40LT)-mediated lifespan-extended canine fibroblast cells (SV40LT-K9 cells) and evaluated their potential as nuclei donors for SCNT, based on cellular integrity and SCNT embryo development.

Results

SV40LT did not cause canine cell transformation, based on cell morphology and proliferation rate. No anchorage-independent growth in vitro and tumorigenicity in vivo were observed. After SCNT with SV40LT-K9 cells, embryos were transferred into surrogate dogs. All dogs failed to become pregnant. Most embryos did not proceed past the 8-cell stage and only one surrogate showed an implantation trace in its oviduct, indicating that the cells rarely developed into blastocysts. Because of the absence of an in vitro maturation method for canine embryos, we performed identical experiments using porcine fibroblast cells. Similarly, SV40LT did not transform porcine fibroblast cells (SV40LT-Pig cells). During in vitro development of SV40LT-Pig cell-driven SCNT embryos, their blastocyst formation rate was clearly lower than those of normal cells. Karyotyping analysis revealed that both SV40LT-K9 and SV40LT-Pig cells had aberrant chromosomal statuses.

Conclusions

Although lifespan-extended canine and porcine cells via SV40LT exhibit no apparent transforming changes, they are inappropriate for use as nuclei donors for SCNT because of their aneuploidy.
  相似文献   

13.
We produced aggregate chimeric embryos between blastomeres from the somatic cell nuclear transfer (SCNT) embryos and blastomeres from normal embryos. The SCNT embryos were produced by fusing enucleated oocytes with GFP gene introduced fibroblast cells, which were derived from a day 16 fetus. GFP gene-introduced fibroblast cells were cultured and passaged four to 12 times over a period of 45-79 days before SCNT. After transferring them into pseudopregnant recipient rabbits, the 15-day postcoitus fetuses were collected. We examined the existence of the cells derived from SCNT embryos in the fetus stage of pregnancy to detect the GFP gene. Fetuses that were not collected continued to develop into newborn rabbits. Two hundred and thirty-six chimeric embryos were produced using 39 SCNT morula stage embryos, and these embryos were transferred to 11 recipient rabbits. As a result, 27 normally developed and 16 degenerated concepti were obtained. The GFP gene-positive signals were detected in one of the fetuses, two of the placentae, and two of the degenerated concepti. In this study, we found that the rabbit SCNT embryos have the ability to develop and differentiate in vivo. We also demonstrated a novel method of producing a transgenic rabbit using SCNT.  相似文献   

14.
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.  相似文献   

15.
Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim of our present study was to establish the optimal TSA treatment in order to improve the development of handmade cloned (HMC) porcine embryos and examine the effect of TSA on their development. The blastocyst percentage of HMC embryos treated with 37.5nM TSA for 22-24h after activation increased up to 80% (control group-54%; P<0.05). TSA mediated increase in histone acetylation was proved by immunofluorescence analysis of acH3K9 and acH4K16. 2-cell stage embryos derived from TSA treatment displayed significant increase in histone acetylation compared to control embryos, whereas no significant differences were observed at blastocyst stage. During time-lapse monitoring, no difference was observed in the kinetics of 2-cell stage embryos. Compact morula (CM) stage was reached 15h later in TSA treated embryos compared to the control. Blastocysts (Day 5 and 6) from HMC embryos treated with TSA were transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development.  相似文献   

16.
17.
Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In many SCNT cases, epigenetic reprogramming of the donor nuclei after transfer into enucleated oocytes was hypothesized to be crucial to the reestablishment of embryonic totipotency. In the present study, we focused on two major epigenetic marks, DNA methylation and histone H3 lysine 9 (H3K9) acetylation, which we examined by indirect immunofluorescence and confocal laser scanning microscopy. During preimplantation development, 67% of two-cell- and 50% of eight-cell-cloned embryos showed higher DNA methylation levels than their in vitro fertilization (IVF) counterparts, which undergo gradual demethylation until the early morula stage. Moreover, whereas an asymmetric distribution of DNA methylation was established in an IVF blastocysts with a lower methylation level in the inner cell mass (ICM) than in the trophectoderm, in most cloned blastocysts, ICM cells maintained a high degree of methylation. Finally, two donor cell lines (S11 and S1-04) that showed a higher level of H3K9 acetylation supported more blastocyst formation after nuclear transfer than the other cell line (S1-03), with a relatively low level of acetylation staining. In conclusion, we propose that abnormal DNA methylation patterns contribute to the poor quality of cloned preimplantation embryos and may be one of the obstacles to successful cloning in primates.  相似文献   

18.
Su J  Wang Y  Li R  Peng H  Hua S  Li Q  Quan F  Guo Z  Zhang Y 《PloS one》2012,7(4):e36181
The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB- (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB- embryos (embryos developed from BCB- oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.  相似文献   

19.
Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.  相似文献   

20.
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号