首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The optimization of a potent and highly selective series of dual mTORC1 and mTORC2 inhibitors is described. An initial focus on improving cellular potency whilst maintaining or improving other key parameters, such as aqueous solubility and margins over hERG IC50, led to the discovery of the clinical candidate AZD8055 (14). Further optimization, particularly aimed at reducing the rate of metabolism in human hepatocyte incubations, resulted in the discovery of the clinical candidate AZD2014 (21).  相似文献   

2.
The inflammatory response associated with the activation of C–C chemokine receptor CCR2 via it’s interaction with the monocyte chemoattractant protein-1 (MCP-1, CCL2) has been implicated in many disease states, including rheumatoid arthritis, multiple sclerosis, atherosclerosis, asthma and neuropathic pain. Small molecule antagonists of CCR2 have been efficacious in animal models of inflammatory disease, and have been advanced into clinical development. The necessity to attenuate hERG binding appears to be a common theme for many of the CCR2 antagonist scaffolds appearing in the literature, presumably due the basic hydrophobic motif present in all of these molecules. Following the discovery of a novel cyclohexyl azetidinylamide CCR2 antagonist scaffold, replacement of the amide bond with heterocyclic rings was explored as a strategy for reducing hERG binding and improving pharmacokinetic properties.  相似文献   

3.
A series of phenyl piperidine derivatives possessing potent and selective CCR2 antagonist activity is reported. Structure-activity relationship (SAR) studies have established that incorporation of a second ring system adjacent to the aryl piperidine plays an important role in determining the CCR2 potency. Both a second piperidine ring and a 1,3-substituted cyclopentylamine have been probed as linkers. For the cyclopentylamine series, the 1S,3R-configuration exhibits much higher affinity for hCCR2 than the 1R,3S-configuration. Compound 3g shows good selectivity over CCR1, CCR3, 5-HT and has an excellent P450 profile.  相似文献   

4.
A series of 5,5-dimethylthiohydantoin derivatives were synthesized and evaluated for androgen receptor pure antagonistic activities for the treatment of castration-resistant prostate cancer. Since CH4933468, which we reported previously, had a problem with agonist metabolites, novel thiohydantoin derivatives were identified by applying two strategies. One was the replacement of the alkylsulfonamide moiety by a phenylsulfonamide to avoid the production of agonist metabolites. The other was the replacement of the phenyl ring with a pyridine ring to improve in vivo potency and reduce hERG affinity. Pharmacological assays indicated that CH5137291 (17b) was a potent AR pure antagonist which did not produce the agonist metabolite. Moreover, CH5137291 completely inhibited in vivo tumor growth of LNCaP-BC2, a castration-resistant prostate cancer model.  相似文献   

5.
We report the synthesis and biological evaluation of aminopyridines substituted with benzoxazole. The SAR of the aminopyridines was explored to improve the inhibitory activity against c-Met and to decrease hERG affinity. These studies led to the discovery of amide 24 which showed good c-Met inhibitory potency, low affinity to hERG and favorable pharmacokinetic properties in rats.  相似文献   

6.
The development of a novel series of imidazole pyrimidine amides as cyclin-dependent kinase (CDK) inhibitors is described. Optimisation of inhibitory potency against multiple CDK's (1, 2 and 9) resulted in imidazole pyrimidine amides with potent in vitro anti-proliferative effects against a range of cancer cell lines. Excellent physiochemical properties and large margins against inhibition of CYP isoforms and the hERG ion channel were achieved by modification of lipophilicity and amine basicity. A candidate with disease model activity in human cancer cell line xenografts and with suitable physiochemical and pharmacokinetic profiles for intravenous (i.v.) dosing was selected for further development as AZD5597.  相似文献   

7.
The identification, optimization, and structure-activity relationship (SAR) of small-molecule CCR4 antagonists is described. An initial screening hit with micromolar potency was identified that was optimized to sub-micromolar binding potency by enantiomer resolution, halogenation of the naphthalene ring, and extension of the alkyl chain linker between the central piperidine ring and the terminal aryl group. An antagonist was identified that showed good cross-reactivity against the mouse receptor and inhibited CCR4-based cell recruitment in dose-dependent fashion.  相似文献   

8.
A series of 4-azetidinyl-1-aryl-cyclohexanes as potent CCR2 antagonists with high selectivity over activity for the hERG potassium channel is discovered through divergent SARs of CCR2 and hERG.  相似文献   

9.
High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.  相似文献   

10.
We discovered novel pyrrolidine MCHR1 antagonist 1 possessing moderate potency. Profiling of pyrrolidine 1 demonstrated that it was an inhibitor of the hERG channel. Investigation of the structure-activity relationship of this class of pyrrolidines allowed us to optimize the MCHR1 potency and decrease the hERG inhibition. Increasing the acidity of the amide proton by converting the benzamide in lead 1 to an anilide provided single digit nanomolar MCHR1 antagonists while replacing the dimethoxyphenyl ring of 1 with alkyl groups possessing increased polarity dramatically reduced the hERG inhibition.  相似文献   

11.

Background

The CC-chemokine receptor-3 (CCR3) has emerged as a target molecule for pharmacological intervention in allergic inflammation.

Objective

To examine whether a dual CCR3 and H1-receptor antagonist (AZD3778) affects allergic inflammation and symptoms in allergic rhinitis.

Methods

Patients with seasonal allergic rhinitis were subjected to three seven days'' allergen challenge series. Treatment with AZD3778 was given in a placebo and antihistamine-controlled design. Symptoms and nasal peak inspiratory flow (PIF) were monitored in the morning, ten minutes post challenge, and in the evening. Nasal lavages were carried out at the end of each challenge series and α2-macroglobulin, ECP, and tryptase were monitored as indices of allergic inflammation.

Results

Plasma levels of AZD3778 were stable throughout the treatment series. AZD3778 and the antihistamine (loratadine) reduced rhinitis symptoms recorded ten minutes post challenge during this period. AZD3778, but not the anti-histamine, also improved nasal PIF ten minutes post challenge. Furthermore, scores for morning and evening nasal symptoms from the last five days of the allergen challenge series showed statistically significant reductions for AZD3778, but not for loratadine. ECP was reduced by AZD3778, but not by loratadine.

Conclusions

AZD3778 exerts anti-eosinophil and symptom-reducing effects in allergic rhinitis and part of this effect can likely be attributed to CCR3-antagonism. The present data are of interest with regard to the potential use of AZD3778 in allergic rhinitis and to the relative importance of eosinophil actions to the symptomatology of allergic rhinitis.

Trial registration

EudraCT No: 2005-002805-21.  相似文献   

12.
We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.  相似文献   

13.
To improve the ex vivo potency of MCH inhibitor 1a and to address its hERG liability, a structure-activity study was carried out, focusing on three regions of the lead structure. Introduction of new side chains with basic nitrogen improved in vitro and ex vivo bindings. Many potent compounds with K(i)<10nM were discovered (compounds 6a-j) and several compounds (14-17) had excellent ex vivo binding at 6h and 24h. Attenuating the basicity of nitrogen on the side chain, and in particular, introduction of a polar group such as aminomethyl on the distal phenyl ring significantly lowered the hERG activity. Further replacement of the distal phenyl group with heteroaryl groups in the cyclohexene series provided compounds such as 28l with excellent ex vivo activity with much reduced hERG liability.  相似文献   

14.
Replacement of the 5-oxopyrrolidin-3-yl fragment in the previously reported lead structure with a 1-acetylpiperidin-4-yl group led to the discovery of a novel series of potent CCR5 antagonists. Introduction of small hydrophobic substituents on the central phenyl ring increased the binding affinity, providing low to sub-nanomolar CCR5 antagonists. The selected compound 11f showed excellent antiviral activity against CCR5-using HIV-1 replication in human peripheral blood mononuclear cells (EC50=0.59 nM) and an acceptable pharmacokinetic profile in dogs.  相似文献   

15.
Physicochemical features of the HERG channel drug binding site   总被引:4,自引:0,他引:4  
Blockade of hERG K(+) channels in the heart is an unintentional side effect of many drugs and can induce cardiac arrhythmia and sudden death. It has become common practice in the past few years to screen compounds for hERG channel activity early during the drug discovery process. Understanding the molecular basis of drug binding to hERG is crucial for the rational design of medications devoid of this activity. We previously identified 2 aromatic residues, Tyr-652 and Phe-656, located in the S6 domain of hERG, as critical sites of interaction with structurally diverse drugs. Here, Tyr-652 and Phe-656 were systematically mutated to different residues to determine how the physicochemical properties of the amino acid side group affected channel block by cisapride, terfenadine, and MK-499. The potency for block by all three drugs was well correlated with measures of hydrophobicity, especially the two-dimensional approximation of the van der Waals hydrophobic surface area of the side chain of residue 656. For residue 652, an aromatic side group was essential for high affinity block, suggesting the importance of a cation-pi interaction between Tyr-652 and the basic tertiary nitrogen of these drugs. hERG also lacks a Pro-Val-Pro motif common to the S6 domain of most other voltage-gated K(+) channels. Introduction of Pro-Val-Pro into hERG reduced sensitivity to drugs but also altered channel gating. Together, these findings assign specific residues to receptor fields predicted by pharmacophore models of hERG channel blockers and provide a refined molecular understanding of the drug binding site.  相似文献   

16.
We describe here orally active and brain-penetrant cathepsin S selective inhibitors, which are virtually devoid of hERG K(+) channel affinity, yet exhibit nanomolar potency against cathepsin S and over 100-fold selectivity to cathepsin L. The new non-peptidic inhibitors are based on a 2-cyanopyrimidine scaffold bearing a spiro[3.5]non-6-yl-methyl amine at the 4-position. The brain-penetrating cathepsin S inhibitors demonstrate potential clinical utility for the treatment of multiple sclerosis and neuropathic pain.  相似文献   

17.
The discovery of a novel series of 5-HT2C agonists based on a tricyclic pyrazolopyrimidine scaffold is described. Compounds with good levels of in vitro potency and moderate to good levels of selectivity with respect to the 5-HT2A and 5-HT2B receptors were identified. One of the analogues (7g) was found to be efficacious in a sub-chronic weight loss model. A key limitation of the series of compounds was that they were found to be potent inhibitors of the hERG ion channel. Some compounds, bearing polar side chains were identified which showed a much reduced hERG liability however these compounds were sub-optimal in terms of their in vitro potency or selectivity.  相似文献   

18.
Phenylalkylamines that possess conformationally rigidified furanyl moieties in place of alkoxy arene ring substituents have been shown previously to possess the highest affinities and agonist functional potencies at the serotonin 5-HT(2A) receptor among this chemical class. Further, affinity declines when both furanyl rings are expanded to the larger dipyranyl ring system. The present paper reports the synthesis and pharmacological evaluation of a series of 'hybrid' benzofuranyl-benzopyranyl phenylalkylamines to probe further the sizes of the binding pockets within the serotonin 5-HT(2A) agonist binding site. Thus, 4(a-b), 5(a-b), and 6 were prepared as homologs of the parent compound, 8-bromo-1-(2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-2-aminopropane 2, and their affinity, functional potency, and intrinsic activity were assessed using cells stably expressing the rat 5-HT(2A) receptor. The behavioral pharmacology of these new analogs was also evaluated in the two-lever drug discrimination paradigm. Although all of the hybrid isomers had similar, nanomolar range receptor affinities, those with the smaller furanyl ring at the arene 2-position (4a-b) displayed a 4- to 15-fold greater functional potency than those with the larger pyranyl ring at that position (5a-b). When the furan ring of the more potent agonist 4b was aromatized to give 6, a receptor affinity similar to the parent difuranyl compound 2 was attained, along with a functional potency equivalent to 2, 4a, and 4b. In drug discrimination experiments using rats trained to discriminate LSD from saline, 4b was more than two times more potent than 5b, with the latter having a potency similar to the classic hallucinogenic amphetamine 1 (DOB).  相似文献   

19.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

20.
A series of compounds which exhibited good human CCR1 binding and functional potency was modified resulting in the discovery of a novel series of high affinity, functionally potent antagonists of the CCR1 receptor. Issues of PXR activity, ion-channel potency, and poor metabolic stability were addressed by the addition of a hydroxyl group to an otherwise lipophilic area in the molecule resulting in the discovery of preclinical candidate BMS-457 for the treatment of rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号