首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we present a portable and generic DNA bioassay system based on in situ oligonucleotide synthesis followed by hybridization based detection. The system include two main parts, an oligonucleotide synthesizer and a fluorescence detection system. The oligonucleotide synthesizer is based on microfluidic technology and capable of synthesizing any desired oligonucleotide which can be either used as a primer for PCR based detection (external) or a probe for hybridization based detection (integrated) of a target DNA analyte. The oligonucleotide sequence can be remotely sent to the system. The integrated fluorescence detection system is based on a photodiode to detect Texas Red fluorophore as low as 0.5 fmol. The complete system, integrating the oligonucleotide synthesizer and fluorescence detection system, was successfully used to distinguish DNA from two different bacteria strains. The presented generic portable instrument has the potential to detect any desired DNA target sequence in the field. Potential applications are for homeland security and fast responses to emerging bio-threats.  相似文献   

2.
1,3-Dipolar [3 + 2] cycloaddition between azides and alkynes--an archetypal "click" chemistry--has been used increasingly for the functionalization of nucleic acids. Copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between alkyne-tagged DNA molecules and azides work well, but they require optimization of multiple reagents, and Cu ions are known to mediate DNA cleavage. For many applications, it would be preferable to eliminate the Cu(I) catalyst from these reactions. Here, we describe the solid-phase synthesis and characterization of 5'-dibenzocyclooctyne (DIBO)-modified oligonucleotides, using a new DIBO phosphoramidite, which react with azides via copper-free, strain-promoted alkyne-azide cycloaddition (SPAAC). We found that the DIBO group not only survived the standard acidic and oxidative reactions of solid-phase oligonucleotide synthesis (SPOS), but that it also survived the thermal cycling and standard conditions of the polymerase chain reaction (PCR). As a result, PCR with DIBO-modified primers yielded "clickable" amplicons that could be tagged with azide-modified fluorophores or immobilized on azide-modified surfaces. Given its simplicity, SPAAC on DNA could streamline the bioconjugate chemistry of nucleic acids in a number of modern biotechnologies.  相似文献   

3.
We describe the development of a molecular detection system designed for use with synovial fluid (SF)-based infections. The methodology employs a lysis/extraction procedure that effectively disrupts microorganisms allowing for release of the microbial DNA and its amplification by polymerase chain reaction (PCR). We tested the effectiveness of adding a mixed-bed, ion-exchange resin to the extract to remove PCR inhibitory components present in the SF. After centrifugation to separate the resin, DNA contained in the supernatant is subjected to PCR using oligonucleotide primers designed for broad-spectrum microorganism detection. Amplification products are analyzed by agarose gel electrophoresis and/or DNA hybridization methodology. We report here the detection sensitivity and specificity of the protocol using SF inoculated withEscherichia coli andStaphyloccocus aureus. We have applied this new methodology to clinical SF specimens with results superior to standard laboratory culturing assays.  相似文献   

4.
Nucleic acid amplification and detection plays an increasingly important role in genetic analysis of clinical samples, medical diagnostics and drug discovery. We present a new quantitative PCR method that allows versatile and flexible nucleic acid target quantification. One of the PCR primers is modified by an oligonucleotide "tail" fluorescently labeled at the 5' end. An oligonucleotide complementary to this tail, carrying a 3'-quencher ("anti-primer"), is included in the PCR along with the two primers. Following primer extension, the reaction temperature is lowered such that the anti-primer hybridizes to and quenches the fluorescence of only the free primer and not the double-stranded PCR product, allowing real-time fluorescent quantification of the latter. This anti-primer-based quantitative real-time PCR (aQRT-PCR) allows simplex or multiplex quantification or single-nucleotide polymorphism genotyping in clinical samples of widely differing quality (e.g., fresh samples, formalin-fixed paraffin-embedded samples and plasma-circulating DNA) and provides a practical alternative to existing, more expensive approaches. The process of aQRT-PCR takes 1.5-2 h.  相似文献   

5.
A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two complementary DNA strands are separated, the fluorescently tagged strand is hybridized to the support-bound oligonucleotide array, and the hybridization pattern is detected by fluorescence scanning. Multiple polymorphisms present in the PCR product may be detected in parallel. The effect of spacer length, surface density and hybridization conditions were evaluated, as was the relative efficacy of hybridization with single or double-stranded PCR products. The utility of the method was demonstrated in the parallel analysis of 5 point mutations from exon 4 of the human tyrosinase gene.  相似文献   

6.
Different methods for labelling polymerase chain reaction (PCR) products with non-radioactive labels for their detection by hybridization with immobilized DNA probes were compared. The use of digoxigenin (DIG) as a label provided greater sensitivity than biotin in a PCR system targeting the invA gene from Salmonella typhimurium. Incorporation of digoxigenin into amplicons in the form of 5-DIG-labelled oligonucleotide primers resulted in better assay signals and was more economical than DIG-labelled dUTP.  相似文献   

7.
Liao S  Liu Y  Zeng J  Li X  Shao N  Mao A  Wang L  Ma J  Cen H  Wang Y  Zhang X  Zhang R  Wei Z  Wang X 《Bioconjugate chemistry》2010,21(12):2183-2189
In the efforts to explore an aptamer-based approach for target sensing and detection with higher sensitivity and specificity, instead of directly labeling aptamer with fluorophores, we proposed a new strategy by attaching a polymerase chain reaction (PCR) template to an oligonucleotide aptamer selected by systematic evolution of ligands by exponential enrichment (SELEX), so that after aptamer target binding, the template moiety serves as the PCR template in real-time quantitative PCR (RT-PCR), and therefore, the binding event can be reported by the following RT-PCR signals. Using the subtractive SELEX method, the oligonucleotide aptamers specific for the Fc fragment of mouse IgG were selected and subjected to coupling with the PCR dsDNA template by using overlap and the asymmetric extension PCR method. The target binding affinity of the PCR template tethered aptamer has been proven by electrophoretic mobility shift assay (EMSA), and further template tethered aptamer mediated real-time quantitative PCR (A-PCR) was conducted to validate the application for such a template tethered aptamer to be a sensitive probe for IgG detection. The results show that the protocols of A-PCR can detect 10-fold serial dilutions of the target, demonstrating a new mechanism to convert aptamer target binding events to amplified RT-PCR signal, and the feasibility of the PCR template tethered aptamer as a facile, specific, and sensitive target probing and detection is established. This new approach also has potential applications in multiple parallel target detection and analysis in a wide range of research fields.  相似文献   

8.
Kalendar R  Lee D  Schulman AH 《Genomics》2011,98(2):137-144
The polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator.  相似文献   

9.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

10.

BACKGROUND:

Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis.

OBJECTIVES:

To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene.

PATIENTS/METHODS:

We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency.

RESULTS:

Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH.

CONCLUSIONS:

cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients.  相似文献   

11.
Array-based mutation detection methodology typically relies on direct hybridization of the fluorescently labeled query sequence to surface-bound oligonucleotide probes. These probes contain either small sequence variations or perfect-match sequence. The intensity of fluorescence bound to each oligonucleotide probe is intended to reveal which sequence is perfectly complementary to the query sequence. However, these approaches have not always been successful, especially for detection of small frameshift mutations. Here we describe a multiplex assay to detect small insertions and deletions by using a modified PCR to evenly amplify each amplicon (PCR/PCR), followed by ligase detection reaction (LDR). Mutations were identified by screening reaction products with a universal DNA microarray, which uncouples mutation detection from array hybridization and provides for high sensitivity. Using the three BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population (BRCA1 185delAG; BRCA1 5382insC; BRCA2 6174delT) as a model system, the assay readily detected these mutations in multiplexed reactions. Our results demonstrate that universal microarray analysis of PCR/PCR/LDR products permits rapid identification of small insertion and deletion mutations in the context of both clinical diagnosis and population studies.  相似文献   

12.
The present study aimed to develop a universal primer-multiplex PCR (UP-M-PCR) assay for the detection of six common bacteria associated with human meningitis. One optimal universal primer (UP) was selected from three UPs by comparing their sensitivities and specificities. All specific primers were tagged with the UP sequence at 5' end, and applied to the multiplex PCR system. The multiplex system was further optimized and assessed. This UP-M-PCR can successfully detect the six meningitis-associated pathogens with high specificity, and the sensitivity could reach up to 10 copies. In the identification of clinical specimens, six positive cases infected with Streptococcus agalactiae, Staphylococcus aureus, and Streptococcus pneumoniae were confirmed. The newly developed multiplex PCR system can be used to detect the six pathogens associated with human bacterial meningitis with high specificity and sensitivity.  相似文献   

13.
PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP). At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA) pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i) any mutation of the restriction site reduced the signal to zero; (ii) double and triple point mutations of sequences flanking the restriction site reduced restriction to 50–80% of the positive control; and (iii) a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same unpurified mixture in broad-range PCR applications.  相似文献   

14.
We have developed a new method for the detection of nucleic acid hybridization, based on a simple latex agglutination test that can be evaluated by the unaided eye. Nucleic acid, e.g., a polymerase chain reaction (PCR) product, is denatured and incubated with polystyrene beads carrying covalently bound complementary oligonucleotide sequences. Hybridization of the nucleic acids leads to aggregation of the latex particles, thereby verifying the presence of target sequence. The test is performed at room temperature, and results are available within 10 min. As a proof of principle, the hybridization/latex agglutination assay was applied to the detection of purified PCR fragments either specific for Salmonella spp. or a synthetic sequence, and to the detection of Salmonella enterica in artificially contaminated chicken samples. A few nanograms of purified PCR fragments were detectable. In artificially contaminated chicken samples, 3 colony-forming units (cfu)/25 g were detected in one of three replicates, and 30 cfu/25 g were detected in both of two replicates when samples for PCR were taken directly from primary enrichment, demonstrating the practical applicability of this test system. Even multiplex detection might be achievable. This novel kind of assay could be useful for a range of applications where hybridization of nucleic acids, e.g., PCR fragments, is to be detected.  相似文献   

15.
Based on the analysis of nucleotide sequences of 16S rRNA, oligonucleotide probes were designed for the detection and identification of representatives of the genus Desulfurococcus (kingdom Crenarchaeota of the domain Archaea). The detection procedure included obtaining PCR products on DNA isolated from pure cultures, enrichments, or natural samples with a designed Crenarchaeota-specific primer pair: Cren 7F (5"-TTCCGGTTGATCCYGCCGGACC-3") and Cren 518R (5"-GCTGGTWTTACCGCGGCGGCTGA-3"). The PCR products were hybridized with Dig-11-dUTP–labeled oligonucleotide probes targeting the genus Desulfurococcus (Dco 198, 5"-CGTTAACYCCYGCCACACC-3") and its species D. mobilis (Dco_mob 198, 5"-CGTTAACCCCTGCCACACC-3") and D. amylolyticus (Dco_amy 198, 5"-CGTTAACCCCCGCCACACC-3"). With the use of these primers and probes, four new strains isolated from hydrotherms of Kamchatka and Kunashir Island were identified as members of the speciesDesulfurococcus amylolyticus. Desulfurococcus representatives were detected in several natural samples, including a sample taken from a marine hydrotherm at Kunashir Island; this demonstrates that representatives of this genus occur not only in terrestrial but also in marine environments.  相似文献   

16.

Background

Short oligonucleotides can be used as markers to tag and track DNA sequences. For example, barcoding techniques (i.e. Multiplex Identifiers or Indexing) use short oligonucleotides to distinguish between reads from different DNA samples pooled for high-throughput sequencing. A similar technique called molecule tagging uses the same principles but is applied to individual DNA template molecules. Each template molecule is tagged with a unique oligonucleotide prior to polymerase chain reaction. The resulting amplicon sequences can be traced back to their original templates by their oligonucleotide tag. Consensus building from sequences sharing the same tag enables inference of original template molecules thereby reducing effects of sequencing error and polymerase chain reaction bias. Several independent groups have developed similar protocols for molecule tagging; however, user-friendly software for build consensus sequences from molecule tagged reads is not readily available or is highly specific for a particular protocol.

Results

MT-Toolbox recognizes oligonucleotide tags in amplicons and infers the correct template sequence. On a set of molecule tagged test reads, MT-Toolbox generates sequences having on average 0.00047 errors per base. MT-Toolbox includes a graphical user interface, command line interface, and options for speed and accuracy maximization. It can be run in serial on a standard personal computer or in parallel on a Load Sharing Facility based cluster system. An optional plugin provides features for common 16S metagenome profiling analysis such as chimera filtering, building operational taxonomic units, contaminant removal, and taxonomy assignments.

Conclusions

MT-Toolbox provides an accessible, user-friendly environment for analysis of molecule tagged reads thereby reducing technical errors and polymerase chain reaction bias. These improvements reduce noise and allow for greater precision in single amplicon sequencing experiments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-284) contains supplementary material, which is available to authorized users.  相似文献   

17.
Nucleic acid-based biochemical assays are crucial to modern biology. Key applications, such as detection of bacterial, viral and fungal pathogens, require detailed knowledge of assay sensitivity and specificity to obtain reliable results. Improved methods to predict assay performance are needed for exploiting the exponentially growing amount of DNA sequence data and for reducing the experimental effort required to develop robust detection assays. Toward this goal, we present an algorithm for the calculation of sequence similarity based on DNA thermodynamics. In our approach, search queries consist of one to three oligonucleotide sequences representing either a hybridization probe, a pair of Padlock probes or a pair of PCR primers with an optional TaqMantrade mark probe (i.e. in silico or 'virtual' PCR). Matches are reported if the query and target satisfy both the thermodynamics of the assay (binding at a specified hybridization temperature and/or change in free energy) and the relevant biological constraints (assay sequences binding to the correct target duplex strands in the required orientations). The sensitivity and specificity of our method is evaluated by comparing predicted to known sequence tagged sites in the human genome. Free energy is shown to be a more sensitive and specific match criterion than hybridization temperature.  相似文献   

18.
 通过寡核苷酸芯片技术检测PPARα基因Leu162Val、Val227Ala多态性和PPARγ Pro12Ala的基因多态性,建立一种快速、简便、准确的方法,为研究非酒精性脂肪性肝病的发病机制、临床诊断和治疗提供依据.收集人体外周血标本,提取DNA进行PCR扩增,设计相应的探针和引物,制备检测芯片,PCR产物与芯片杂交后,扫描芯片并分析结果.PCR产物进行测序验证.寡核苷酸芯片技术检测PPARα基因Leu162Val、Val227Ala多态性和PPARγ Pro12Ala基因多态性结果与测序结果一致.寡核苷酸芯片技术检测非酒精性脂肪性肝病(NAFLD)密切相关的PPAR基因多态性快速、准确,值得临床推广和应用.  相似文献   

19.
Two different strategies for scanning and screening of mutations in polymerase chain reaction (PCR) products by hybridization analysis are described, employing real-time biospecific interaction analysis (BIA) for detection. Real-time BIA was used to detect differences in hybridization responses between PCR products and different 17-mer oligonucleotide probes. For the analysis using a biosensor instrument, two different experimental formats were investigated based on immobilization of either biotinylated PCR products or oligonucleotide probes onto a sensor chip. Applied on the human tumour suppressor p53 gene, differences in hybridization levels for full-match and mismatch situations employing both formats allowed the detection of point mutations in exon 6 PCR products, derived from a breast tumour biopsy sample. In addition, a mutant sample sequence could be detected in a 50/50 background of wild type exon 6 sequence. The suitability of the different formats for obtaining a regenerable system and a high throughput of samples is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
A hybridization assay using fluorescence polarization was combined with the asymmetric polymerase chain reaction (PCR) in a method for the detection of the verotoxin type 2 gene of verotoxin-producing Escherichia coli. Six oligonucleotide probes labeled with FITC were designed and evaluated. One of these gave a detection limit of 10(3) colony forming units per assay, and assay results could be obtained within 5 min after PCR. It appears that the detection limit was restricted mainly by the extent and fidelity of PCR amplification, rather than by the sensitivity of the fluorescence polarization technique, indicating that good probe design facilitates the rapid detection of the PCR product. The fluorescence polarization assay, in conjunction with DNA amplification by PCR, is a powerful and widely applicable method for the rapid and sensitive detection of oligonucleotide sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号