首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trapp SC  Croteau RB 《Genetics》2001,158(2):811-832
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.  相似文献   

2.
3.
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary metabolism in terpenoid-accumulating plant species. Expression of a putative Arabidopsis terpene synthase gene, designated AtTPS03, was demonstrated by amplification of a 392-bp cDNA fragment using primers designed to conserved regions of plant terpene synthases. Using the AtTPS03 fragment as a hybridization probe, a second AtTPS cDNA, designated AtTPS10, was isolated from a jasmonate-induced cDNA library. The partial AtTPS10 cDNA clone contained an open reading frame of 1665 bp encoding a protein of 555 amino acids. Functional expression of AtTPS10 in Escherichia coli yielded an active monoterpene synthase enzyme, which converted geranyl diphosphate (C(10)) into the acyclic monoterpenes beta-myrcene and (E)-beta-ocimene and small amounts of cyclic monoterpenes. Based on sequence relatedness, AtTPS10 was classified as a member of the TPSb subfamily of angiosperm monoterpene synthases. Sequence comparison of AtTPS10 with previously cloned monoterpene synthases suggests independent events of functional specialization of terpene synthases during the evolution of terpenoid secondary metabolism in gymnosperms and angiosperms. Functional characterization of the AtTPS10 gene was prompted by the availability of Arabidopsis genome sequences. Although Arabidoposis has not been reported to form terpenoid secondary metabolites, the unexpected expression of TPS genes belonging to the TPSb subfamily in this species strongly suggests that terpenoid secondary metabolism is active in the model system Arabidopsis.  相似文献   

4.
We report on the cDNA cloning and characterization of a novel short-chain isoprenyl diphosphate synthase from the aphid Myzus persicae. Of the three IPPS cDNAs we cloned, two yielded prenyltransferase activity following expression in Escherichia coli; these cDNAs encode identical proteins except for the presence, in one of them, of an N-terminal mitochondrial targeting peptide. Although the aphid enzyme was predicted to be a farnesyl diphosphate synthase by BLASTP analysis, rMpIPPS, when isopentenyl diphosphate and dimethylallyl diphosphate are supplied as substrates, typically generated geranyl diphosphate (C10) as its main product, along with significant quantities of farnesyl diphosphate (C15). Analysis of an MpIPPS homology model pointed to substitutions that could confer GPP/FPP synthase activity to the aphid enzyme.  相似文献   

5.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

6.
7.
8.
Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C5 alcohols (isopentenyl and dimethylallyl) to form C10 and C15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.  相似文献   

9.
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.  相似文献   

10.
11.
One of the most interesting features of terpene synthases is their ability to form multiple products with different carbon skeletons from a single prenyl diphosphate substrate. The maize sesquiterpene synthase TPS4, for example, produces a mixture of 14 different olefinic sesquiterpenes. To understand the complex TPS4 reaction mechanism, we modeled the active site cavity and conducted docking simulations with the substrate farnesyl diphosphate, several predicted carbocation intermediates, and the final reaction products. The model suggests that discrete steps of the reaction sequence are controlled by two different active site pockets, with the conformational change of the bisabolyl cation intermediate causing a shift from one pocket to the other. Site-directed mutagenesis and measurements of mutant activity in the presence of (E,E)- and (Z,E)-farnesyl diphosphate as substrates were employed to test this model. Amino acid alterations in pocket I indicated that early steps of the catalytic process up to the formation of the monocyclic bisabolyl cation are probably localized in this compartment. Mutations in pocket II primarily inhibited the formation of bicylic compounds, suggesting that secondary cyclizations of the bisabolyl cation are catalyzed in pocket II.  相似文献   

12.
Analogs of dimethylallyl diphosphate (DMAPP) and geranyl diphosphate (GPP) were prepared and tested as potential substrates of prenyltransferase of the tobacco hornworm, Manduca sexta, and of a sesquiterpene synthase derived from pig liver. Enzyme derived from corpora allata homogenates of both the larval and adult stage of M. sexta coupled each of the DMAPP analogs to produce homologous geranyl and farnesyl diphosphate products in the order (Z)-3-ethyl>(Z)-3-n-propyl>(Z)-3-methyl (DMAPP)>(Z)-3-i-propyl(Z)-3-n-butyl. In competition studies, the ethyl and n-propyl analogs either enhanced or had no effect on DMAPP coupling, whereas the larger analogs were inhibitors. (Z)-7-ethyl and (2Z,6Z)-3,7-diethyl analogs of GPP were as good, if not better substrates of larval prenyltransferase, while the C-3 ethyl analog of GPP, which is precursor to an isomeric form of juvenile hormone (JH) that is not typically found in insects, was poorly coupled by the enzyme. While similarities were seen for whole-cell extracts derived from adult and larval M. sexta, adult prenyltransferase derived from cytosolic and 16,000xg pellet fractions displayed distinct competitive coupling of GPP and its homologs, suggesting differences in substrate specificity as a result of enzyme localization. In contrast to M. sexta, the pig liver enzyme poorly coupled each of the homologous DMAPP derivatives, and the homologous derivatives of GPP were less efficiently coupled than GPP. These results indicate that prenyltransferase in M. sexta possesses high steric latitude at the (Z)-C-3 and C-7 alkyl positions of DMAPP and GPP, respectively, in contrast to other animal prenyltransferases but in keeping with the enzyme's presumptive role in homologous JH metabolism.  相似文献   

13.
Geranyl diphosphate synthase catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give a C(10) compound, geranyl diphosphate, which is a precursor of all monoterpenoids. However, the gene has not been isolated from any organisms. To examine the possibility that geranyl diphosphate synthase has evolved from a common ancestor of the prenyltransferase family and to predict the active site structure, we tried to convert Bacillus stearothermophilus farnesyl diphosphate synthase to geranyl diphosphate synthase, according to our previous findings. Several mutated farnesyl diphosphate synthases that have single amino acid substitutions before the first aspartate-rich motif were constructed. A mutated enzyme that has the replacement of serine by phenylalanine at the fourth position before the motif exclusively produced geranyl diphosphate when dimethylallyl diphosphate was used as the primer, and hardly accepted geranyl diphosphate as a primer, indicating that this mutation causes the conversion to geranyl diphosphate synthase. This result supports the idea that the product specificities of all members of the E-prenyltransferase family are mainly defined by a few structural features: the amino acids at the fourth position and the fifth position before the first aspartate-rich motif, and the insertion of two amino acids in the motif. This suggests that natural geranyl diphosphate synthases might have an active site structure similar to that of the mutated enzyme.  相似文献   

14.
Grand fir (Abies grandis) is a useful model system for studying the biochemistry, molecular genetics, and regulation of defensive oleoresin formation in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced biosynthesis of monoterpenes and sesquiterpenes (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. A similarity-based cloning strategy, employing primers designed to conserved regions of existing monoterpene synthases and anticipated to amplify a 1000-bp fragment, unexpectedly yielded a 300-bp fragment with sequence reminiscent of a terpenoid synthase. Utilization of this amplicon as a hybridization probe afforded four new, full-length cDNA species from a wounded fir stem cDNA library that appeared to encode four distinct monoterpene synthases. Expression in Escherichia coli, followed by enzyme assay with geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), and analysis of the terpene products by chiral phase gas chromatography and mass spectrometry confirmed that these sequences encoded four new monoterpene synthases, including (-)-camphene synthase, (-)-beta-phellandrene synthase, terpinolene synthase, and an enzyme that produces both (-)-limonene and (-)-alpha-pinene. The deduced amino acid sequences indicated these enzymes to be 618 to 637 residues in length (71 to 73 kDa) and to be translated as preproteins bearing an amino-terminal plastid targeting sequence of 50-60 residues. cDNA truncation to delete the transit peptide allowed functional expression of the "pseudomature" forms of these enzymes, which exhibited no change in product outcome as a result of truncation. Sequence comparison revealed that these new monoterpene synthases from grand fir are members of the Tpsd gene subfamily and resemble sesquiterpene (C(15)) synthases and diterpene (C(20)) synthases from conifers more closely than mechanistically related monoterpene synthases from angiosperm species. The availability of a nearly complete set of constitutive and inducible monoterpene synthases from grand fir (now numbering seven) will allow molecular dissection of the resin-based defense response in this conifer species, and detailed study of structure-function relationships among this large and diverse family of catalysts, all of which exploit the same stereochemistry in the coupled isomerization-cyclization reaction.  相似文献   

15.
Farnesyl diphosphate synthase (FPPase) catalyzes chain elongation of the C(5) substrate dimethylallyl diphosphate (DMAPP) to the C(15) product farnesyl diphosphate (FPP) by addition of two molecules of isopentenyl diphosphate (IPP). The synthesis of FPP proceeds in two steps, where the C(10) product of the first addition, geranyl diphosphate (GPP), is the substrate for the second addition. The product selectivity of avian FPPase was altered to favor synthesis of GPP by site-directed mutagenesis of residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. Amino acid substitutions that reduced the size of the binding pocket were identified by molecular modeling. FPPase mutants containing seven promising modifications were constructed. Initial screens using DMAPP and GPP as substrates indicated that two of the substitutions, A116W and N144'W, strongly discriminated against binding of GPP to the allylic site. These observations were confirmed by an analysis of the products from reactions with DMAPP in the presence of excess IPP and by comparing the steady-state kinetic constants for the wild-type enzyme and the A116W and N114W mutants.  相似文献   

16.
Terpenoids emitted from snapdragon flowers include three monoterpenes derived from geranyl diphosphate (GPP), myrcene, ( E )-β-ocimene and linalool, and a sesquiterpene, nerolidol, derived from farnesyl diphosphate (FPP). Using a functional genomics approach, we have isolated and biochemically characterized two nearly identical nerolidol/linalool synthases, AmNES/LIS-1 and AmNES/LIS-2, two enzymes responsible for the terpenoid profile of snapdragon scent remaining to be characterized. The AmNES/LIS-2 protein has an additional 30 amino acids in the N-terminus, and shares 95% amino acid sequence identity with AmNES/LIS-1, with only 23 amino acid substitutions distributed across the homologous regions of the proteins. Although these two terpene synthases have very similar catalytic properties, and synthesize linalool and nerolidol as specific products from GPP and FPP, respectively, they are compartmentally segregated. GFP localization studies and analysis of enzyme activities in purified leucoplasts, together with our previous feeding experiments, revealed that AmNES/LIS-1 is localized in cytosol, and is responsible for nerolidol biosynthesis, whereas AmNES/LIS-2 is located in plastids, and accounts for linalool formation. Our results show that subcellular localization of bifunctional enzymes, in addition to the availability of substrate, controls the type of product formed. By directing nearly identical bifunctional enzymes to more than one cellular compartment, plants extend the range of available substrates for enzyme utilization, thus increasing the diversity of the metabolites produced.  相似文献   

17.
Polyisoprenoid alcohols occurring in spinach leaves were analyzed by a two-plate TLC method. Z,E-mixed polyprenols (C(55-60)), glycinoprenols (C(50-55)), and solanesol (C(45)) were mainly found in chloroplasts, whereas dolichols (C(70-80)) were mainly found in microsomes. Analysis of enzymatic products derived from [1-(14)C]isopentenyl diphosphate and farnesyl diphosphate (FPP) with subcellular fractions revealed that chloroplasts and microsomes had the ability to synthesize Z,E-mixed polyprenyl (C(50-65)) and all E-polyprenyl (C(45-50)) diphosphates, and Z,E-mixed polyprenyl (C(70-85)) diphosphates, respectively. FPP and geranylgeranyl diphosphate (GGPP) were both accepted for these enzymatic reactions, the former being a better substrate than the latter. NMR analysis of naturally occurring spinach Z,E-mixed polyprenol (C(55)) and dolichol (C(75)) revealed that the number of internal trans isoprene residues in the former was three in comparison with two internal trans residues found for the latter. These results indicate that two kinds of polyprenyl diphosphate synthases occur in spinach: One is the chloroplast enzyme involved in the synthesis of the shorter-chain (C(50-65)) Z,E-mixed polyprenols and the other is the microsomal enzyme involved in the synthesis of longer-chain (C(70-85)) Z,E-mixed polyprenols, which is converted to dolichols.  相似文献   

18.
Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.  相似文献   

19.
Incubation of RAW 264.7 murine macrophages with 9,15-dihydroxy-11-oxo-, (5Z,9alpha,13E,15(S))-Prosta-5,13-dien-1-oic acid [prostaglandin D(2) (PGD(2))] induced formation of considerable peroxisome proliferator-activated receptor-gamma (PPARgamma) activity [Nature 391 (1998) 79]. Because PGD(2) itself is a poor PPARgamma ligand, we incubated RAW 264.7 macrophage cultures with prostaglandin D(2) for 24 h and studied the ability of the metabolites formed to activate PPARgamma. PGD(2) products were extracted and fractionated by reverse phase high-performance liquid chromatography. Chemical identification was achieved by UV spectroscopy, gas-liquid chromatography/mass spectrometry and chemical syntheses of reference compounds. PGD(2) was converted to eight products, six of which were identified. Ligand-induced interaction of PPARgamma with steroid receptor coactivator-1 was determined by glutathione-S-transferase pull-down assays and PPARgamma activation was investigated by transient transfection of RAW 264.7 macrophages. In addition to the previously known ligand 11-oxo-(5Z,9,12E,14Z)-Prosta-5,9,12,14-tetraen-1-oic acid (15-deoxy-delta(12,14)-PGJ(2)), a novel PPARgamma ligand and activator viz. 9-hydroxy-11-oxo-, (5Z,9alpha,12E,14Z)-Prosta-5,12,14-trien-1-oic acid (15-deoxy-delta(12,14)-PGD(2)) was identified. The biological significance of these results is currently under investigation.  相似文献   

20.
Z-prenyl diphosphate synthases catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphates to synthesize polyprenyl diphosphates. In mycobacteria, these are precursors of decaprenyl phosphate, a molecule which plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan. Recently, it was demonstrated that open reading frame Rv2361c of the Mycobacterium tuberculosis H37Rv genome encodes a unique prenyl diphosphate synthase (M. C. Schulbach, P. J. Brennan, and D. C. Crick, J. Biol. Chem. 275:22876-22881, 2000). We have now purified the enzyme to near homogeneity by using an Escherichia coli expression system and have shown that the product of this enzyme is decaprenyl diphosphate. Rv2361c has an absolute requirement for divalent cations and an optimal pH range of 7.5 to 8.5, and the activity is stimulated by both detergent and dithiothreitol. The enzyme catalyzes the addition of isopentenyl diphosphate to geranyl diphosphate, neryl diphosphate, omega,E,E-farnesyl diphosphate, omega,E,Z-farnesyl diphosphate, or omega,E,E,E-geranylgeranyl diphosphate, with Km values for the allylic substrates of 490, 29, 84, 290, and 40 microM, respectively. The Km value for isopentenyl diphosphate is 89 microM. The catalytic efficiency is greatest when omega,E,Z-farnesyl diphosphate is used as the allylic acceptor, suggesting that this is the natural substrate in vivo, a conclusion that is supported by previous structural studies of decaprenyl phosphoryl mannose isolated from M. tuberculosis. This is the first report of a bacterial Z-prenyl diphosphate synthase that preferentially utilizes an allylic diphosphate primer having the alpha-isoprene unit in the Z configuration, indicating that Rv1086 (omega,E,Z-farnesyl diphosphate synthase) and Rv2361c act sequentially in the biosynthetic pathway that leads to the formation of decaprenyl phosphate in M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号