首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

2.
The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.  相似文献   

3.
The sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3 were determined by construction of their physical maps on the basis of restriction analysis. As the reported centromeric regions contain large gaps in the middle due to highly repetitive sequences, appropriate probes for Southern hybridization were prepared from the sequences reported for the flanking regions and from the sequences of BAC and YAC clones newly isolated in this work, and restriction analysis was performed using DNA of a hypomethylated strain (ddm1). The sizes of the genetically defined centromeric regions were deduced to be 9 megabases (Mb), 4.2 Mb and 4.1 Mb, respectively (chromosome 1, from markers T22C23-t7 to T3P8-sp6; chromosome 2, from F5J15-sp6 to T15D9; chromosome 3, from T9G9-sp6 to T15M14; G. P. Copenhaver et al. Science, 286, 2468-2479, 1999). By combining the sizes of the centromeric regions previously estimated for chromosomes 4 and 5 and the sequence data reported for the A. thaliana genome, the total genome size of A. thaliana was estimated to be approximately 146.0 Mb.  相似文献   

4.
Presence of genes in gene-rich regions on wheat chromosomes has been widely reported. However, there is a lack of information on the precise characterization of these regions with respect to the distribution of genes and recombination. We attempted to critically analyze the available data to characterize gene-rich regions and to study the distribution of genes and recombination on wheat homoeologous group 6 chromosomes which are a reservoir of several useful genes controlling traits of economic importance. Consensus physical and genetic linkage maps were constructed for homoeologous group 6 using physical and genetic mapping data. Five major gene-rich regions were identified on homoeologous group 6 chromosomes, with two on the short and three on long arm. More than 90% of marker or gene loci were present in these five gene-rich regions, which comprise about 30% of the total physical chromosomal length. The gene-rich regions were mainly present in the distal 60% regions of the chromosomes. About 61% of the total loci map in the most distal regions which span only about 4% of the physical length of the chromosome. A range of sub-microscopic regions within each gene-rich region were also identified. Comparisons of the consensus physical and genetic linkage maps revealed that recombination occurred mainly in the gene-rich regions. Seventy percent of the total recombination occurred in the two most distally located regions that span only 4% of the physical length of the chromosomes. The relationship of recombination to the gene-rich region is not linear with distance from the centromere, especially on the long arm. The kb/cM estimates for group 6 chromosomes ranged from 146 kb in the gene-rich to about 10 Mb in the gene-poor region. The information obtained here is vital in understanding wheat genome structure and organization, which may lead in developing better strategies for positional cloning in wheat and related cereals.This revised version was pubished online in April 2005 with corrections to the page numbering.  相似文献   

5.
6.
The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.  相似文献   

7.
An integrated physical and genetic map of the rice genome   总被引:12,自引:0,他引:12       下载免费PDF全文
Rice was chosen as a model organism for genome sequencing because of its economic importance, small genome size, and syntenic relationship with other cereal species. We have constructed a bacterial artificial chromosome fingerprint–based physical map of the rice genome to facilitate the whole-genome sequencing of rice. Most of the rice genome (~90.6%) was anchored genetically by overgo hybridization, DNA gel blot hybridization, and in silico anchoring. Genome sequencing data also were integrated into the rice physical map. Comparison of the genetic and physical maps reveals that recombination is suppressed severely in centromeric regions as well as on the short arms of chromosomes 4 and 10. This integrated high-resolution physical map of the rice genome will greatly facilitate whole-genome sequencing by helping to identify a minimum tiling path of clones to sequence. Furthermore, the physical map will aid map-based cloning of agronomically important genes and will provide an important tool for the comparative analysis of grass genomes.  相似文献   

8.
The condensed centromeric regions of higher eukaryotic chromosomes contain satellite sequences, transposons and retroelements, as well as transcribed genes that perform a variety of functions. These chromosomal domains nucleate kinetochores, mediate sister chromatid cohesion and inhibit recombination, yet their characterization has often lagged behind that of chromosome arms. Here, we describe a whole-genome fractionation technique that rapidly identifies bacterial artificial chromosome (BAC) clones derived from plant centromeric regions. This approach, which relies on hybridization of methylated genomic DNA, revealed BACs that correspond to the genetically mapped and sequenced Arabidopsis thaliana centromeric regions. Extending this method to other species in the Brassicaceae family identified centromere-linked clones and provided genome-wide estimates of methylated DNA abundance. Sequencing these clones will elucidate the changes that occur during plant centromere evolution. This genomic fractionation technique could identify centromeric DNA in genomes with similar methylation and repetitive DNA content, including those from crops and mammals.  相似文献   

9.
We present restriction maps for chromosomes 1 and 2 of six cloned lines of P. falciparum. These delineate the locations of eight genetic markers, including genes for five antigens. In parasites from diverse areas, chromosome structure is conserved in central regions but is polymorphic both in length and sequence near the telomeres. The telomeres and adjacent sequences comprise a conserved structure at the ends of most P. falciparum chromosomes. However, the subtelomeric zones are polymorphic and coincide with the locations of a repetitive element (rep20). Deletions of rep20 generate clones of P. falciparum that lack rep20 on one or both ends of chromosomes 1 or 2, and larger deletions remove telomere-proximal genes as well. The chromosome length polymorphisms can therefore be largely explained by recombination within these blocks of repeats, a mechanism that is also important in the generation of diversity in genes for repetitive antigens of P. falciparum.  相似文献   

10.
The centromeric and telomeric heterochromatin of eukaryotic chromosomes is mainly composed of middle-repetitive elements, such as transposable elements and tandemly repeated DNA sequences. Because of this repetitive nature, Whole Genome Shotgun Projects have failed in sequencing these regions. We describe a novel kind of transposon-based approach for sequencing highly repetitive DNA sequences in BAC clones. The key to this strategy relies on physical mapping the precise position of the transposon insertion, which enables the correct assembly of the repeated DNA. We have applied this strategy to a clone from the centromeric region of the Y chromosome of Drosophila melanogaster. The analysis of the complete sequence of this clone has allowed us to prove that this centromeric region evolved from a telomere, possibly after a pericentric inversion of an ancestral telocentric chromosome. Our results confirm that the use of transposon-mediated sequencing, including positional mapping information, improves current finishing strategies. The strategy we describe could be a universal approach to resolving the heterochromatic regions of eukaryotic genomes.  相似文献   

11.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

12.
The pseudoautosomal regions of the human sex chromosomes   总被引:25,自引:0,他引:25  
In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelter's (47,XXY) and Turner's syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.  相似文献   

13.
Y S Fan  R Sasi  C Lee  D Court  C C Lin 《Genomics》1992,14(2):542-545
Fifty cosmids have been mapped to metaphase chromosomes by fluorescence in situ hybridization under conditions that suppress signals from repetitive DNA sequences. The cosmid clones were isolated from a flow-sorted human X chromosome library. Thirty-eight of the clones were localized to chromosome X and 12 to autosomes such as chromosomes 3, 7, 8, 14, and 17. Although most of the cosmids mapped to the X chromosome appeared to be scattered along both the short and long arms, 10 cosmids were localized to the centromeric region of the chromosome. Southern blot analysis revealed that only two of these clones hybridized to probe pXBR-1, which detects the DXZ1 locus. In addition, 4 out of 5 cosmids mapped on chromosome 8 also localized on the centromeric region. While localization of X-specific cosmids will facilitate the physical mapping of the human X chromosome, cosmids mapped to the centromeric regions of chromosomes X and 8 should be especially useful for studying the structure and organization of these regions.  相似文献   

14.
J P Rubio  J K Thompson    A F Cowman 《The EMBO journal》1996,15(15):4069-4077
PfEMP1, a Plasmodium falciparum-encoded protein on the surface of infected erythrocytes is a ligand that mediates binding to receptors on endothelial cells. The PfEMP1 protein, which is encoded by the large var gene family, shows antigenic variation and changes in binding phenotype associated with alterations in antigenicity. We have constructed a yeast artificial chromosome contig of chromosome 12 from P. falciparum and show that var genes are arranged in four clusters; two lie amongst repetitive subtelomeric sequences and two occur in the more conserved central region. Analysis of parasite chromosomes by pulsed field gel electrophoresis (PFGE) demonstrates that most contain var genes and two-dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex. Analysis of a var gene located in the subtelomeric region of chromosome 12 has shown that it has close homologues at the opposite end of the chromosome and in the subtelomeric region of two other chromosomes. This suggests that recombination between heterologous chromosomes has occurred in the subtelomeric regions of these chromosomes. The subtelomeric location of var genes dispersed amongst repetitive sequences has important implications for generation of antigenic variants and novel cytoadherent specificities of this protein.  相似文献   

15.
Alphoid and satellite III sequences are arranged as large tandem arrays in the centromeric regions of human chromosomes. Several recent studies using in situ hybridisation to investigate the relative positions of these sequences have shown that they occupy adjacent but non-overlapping domains in metaphase chromosomes. We have analysed the DNA sequence at the junction between alphoid and satellite III sequences in a cosmid previously mapped to chromosome 10. The alphoid sequence consists of tandemly arranged dimers which are distinct from the known chromosome 10-specific alphoid family. Polymerase chain reaction experiments confirm the integrity of the sequence data. These results, together with pulsed field gel electrophoresis data place the boundary between alphoid and satellite III sequences in the mapping interval 10 centromere-10q11.2. The sequence data shows that these repetitive sequences are separated by a partial L1 interspersed repeat sequence less than 500bp in length. The arrangement of the junction suggests that a recombination event has brought these sequences into close proximity.  相似文献   

16.
Chen C  Yu Q  Hou S  Li Y  Eustice M  Skelton RL  Veatch O  Herdes RE  Diebold L  Saw J  Feng Y  Qian W  Bynum L  Wang L  Moore PH  Paull RE  Alam M  Ming R 《Genetics》2007,177(4):2481-2491
A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales.  相似文献   

17.
Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.  相似文献   

18.
Integrated mapping in large-genome monocots has been carried out on a limited number of species. Furthermore, integrated maps are difficult to construct for these species due to, among other reasons, the specific plant populations needed. To fill these gaps, Alliums were chosen as target species and a new strategy for constructing suitable populations was developed. This strategy involves the use of trihybrid genotypes in which only one homeolog of a chromosome pair is recombinant due to interspecific recombination. We used genotypes from a trihybrid Allium cepa x (A. roylei x A. fistulosum) population. Recombinant chromosomes 5 and 8 from the interspecific parent were analyzed using genomic in situ hybridization visualization of recombination points and the physical positions of recombination were integrated into AFLP linkage maps of both chromosomes. The integrated maps showed that in Alliums recombination predominantly occurs in the proximal half of chromosome arms and that 57.9% of PstI/MseI markers are located in close proximity to the centromeric region, suggesting the presence of genes in this region. These findings are different from data obtained on cereals, where recombination rate and gene density tends to be higher in distal regions.  相似文献   

19.
The small annual grass Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model system to study questions unique to the grasses. Many Brachypodium resources have been developed including a whole genome sequence, highly efficient transformation and a large germplasm collection. We developed a genetic linkage map of Brachypodium using single nucleotide polymorphism (SNP) markers and an F2 mapping population of 476 individuals. SNPs were identified by targeted resequencing of single copy genomic sequences. Using the Illumina GoldenGate Genotyping platform we placed 558 markers into five linkage groups corresponding to the five chromosomes of Brachypodium. The unusually long total genetic map length, 1,598 centiMorgans (cM), indicates that the Brachypodium mapping population has a high recombination rate. By comparing the genetic map to genome features we found that the recombination rate was positively correlated with gene density and negatively correlated with repetitive regions and sites of ancestral chromosome fusions that retained centromeric repeat sequences. A comparison of adjacent genome regions with high versus low recombination rates revealed a positive correlation between interspecific synteny and recombination rate.  相似文献   

20.
In the pachytene stage, chromosomes are maximally extended and can easily be distinguished. Therefore, by applying fluorescence in situ hybridization (FISH) to pachytene chromosomes, it is possible to generate a high-resolution physical map of chromosome 9 in maize. Molecular markers ( umc105a on the short arm of chromosome 9, csu145a on the long arm) were used that flank quantitative trait loci (QTL) for sugarcane borer (SCB) and southwestern corn borer (SWCB) resistance. As reference markers, a centromere-specific probe (CentC) and a knob-specific probe (pZm4-21) were utilized. Two fluorescent dyes with four probes were used to physically position these markers. Signals of repetitive DNA sequences in cosmid probes were suppressed by chromosome in situ suppression (CISS) hybridization. FISH signals were strong and reproducible for all probes. We measured the distances in micrometers for four subchromosomal regions and estimated the corresponding number of base pairs. The physical locations of the markers were compared on mitotic metaphase and pachytene chromosomes to the genetic map of chromosome 9. Genetic analysis positioned the two markers for SCB resistance in a central interval representing approximately 33.7% of the genetic length. However, the physical distance between these probes was determined to encompass about 70% of the physical length of chromosome 9. The two markers were located at distal positions on opposite arms of chromosome 9. Physical maps provide valuable information for gene isolation and understanding recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号