首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Metastatic spread of cancer to distant vital organs, including lung and bone, is the overwhelming cause of breast cancer mortality and morbidity. Effective treatment of systemic metastasis relies on the identification and functional characterization of metastasis mediators to multiple organs. Overexpression of the chemokine (C-C motif) ligand 2 (CCL2) is frequently associated with advanced tumor stage and metastatic relapse in breast cancer. However, the functional mechanism of CCL2 in promoting organ-specific metastasis of breast cancer has not been rigorously investigated. Here, we used organ-specific metastatic sublines of the MDA-MB-231 human breast cancer cell line to demonstrate that overexpression of CCL2 promotes breast cancer metastasis to both lung and bone. Conversely, blocking CCL2 function with a neutralizing antibody reduced lung and bone metastases. The enhancement of lung and bone metastases by CCL2 was associated with increased macrophage infiltration and osteoclast differentiation, respectively. By performing functional assays with primary cells isolated from the wild type, CCL2 and CCR2 knock-out mice, we showed that tumor cell-derived CCL2 depends on its receptor CCR2 (chemokine, CC motif, receptor 2) expressed on stromal cells to exert its function in promoting macrophage recruitment and osteoclast differentiation. Overall, these data demonstrated that CCL2-expressing breast tumor cells engage CCR2+ stromal cells of monocytic origin, including macrophages and preosteoclasts, to facilitate colonization in lung and bone. Therefore, CCL2 and CCR2 are promising therapeutic targets for simultaneously inhibiting lung and bone metastasis of breast cancer.Breast cancer is the most common malignancy in women in the United States, with an estimated 182,000 new cases and 40,000 deaths in 2008 (1). Late stage breast cancer patients develop metastases in bone, lung, liver, brain, and other organs, which are responsible for most breast cancer-related mortality and morbidity (2). Severe complications from bone metastasis include debilitating bone fractures, nerve compression and bone pain, and hypercalcemia (35), whereas lung metastasis is accompanied by cough, bloody sputum, rib cage pain, and, eventually, failure of the respiratory functions (6). Colonization of different secondary organs by breast cancer is believed to be a complex, multigenic process that depends on productive interactions between tumor cells and stromal microenvironments through concerted actions of organ-specific metastasis genes (7, 8). Functional genomic analysis of preclinical models of breast cancer to bone, lung, and brain have identified distinct sets of organ-specific metastasis genes (911), providing novel mechanistic insights into key rate-limiting steps of metastasis to different organs. However, as advanced breast cancer patients often suffer from metastases at several secondary organs, identifying genes that are capable of instigating metastasis to multiple sites may provide the ideal targets for therapeutic intervention of systemic metastasis.Chemokines are small (8–14 kDa) proteins classified into four conserved groups (CXC, CC, C, and CX3C) based on the position of the first two cysteines that are adjacent to the amino terminus (12). They are chemotactic cytokines that stimulate directed migration of leukocytes in response to inflammatory signals. Chemokines are also involved in the maintenance of hematopoietic homeostasis, regulation of cell proliferation, tissue morphogenesis, and angiogenesis (13). Chemokines bind to the seven-transmembrane domain receptors to elicit downstream molecular events that coordinate cell movement. Even though chemokines are unlikely to be a contributing factor for tumor initiation, they can have pleiotropic effects on tumor progression (13, 14). Among more than 50 human chemokines, CCL2 is of particular importance. CCL2, also called monocyte chemoattractant protein-1 (MCP-1), is a potent chemoattractant for monocytes, memory T lymphocytes, and natural killer cells (15). It is involved in a number of inflammatory conditions associated with monocyte recruitment, including delayed hypersensitivity reactions, bacterial infection, arthritis, and renal disease (15). The importance of CCL2 in cancer was manifested by its overexpression in a variety of tumor types, including glioma, ovarian, esophagus, lung, breast, and prostate cancers (1517). In prostate cancer, CCL2 expression levels was associated with advanced pathological stage (16). Importantly, CCL2-neutralizing antibodies inhibit bone resorption in vitro and bone metastasis in vivo (1820). In lung cancer, serum CCL2 levels were elevated in lung cancer patients with bone metastasis compared with localized diseases. Neutralizing antibodies against CCL2 also inhibited the tumor conditioned media-induced osteoclast formation in vitro and bone metastasis in vivo (17). Taken together, these findings suggested a role of CCL2 in bone metastasis.A potential role of CCL2 in breast cancer progression and metastasis has been indicated by the analysis of CCL2 expression of tumor and serum samples from breast cancer patients. Serum CCL2 levels were significantly higher in postmenopausal breast cancer patients than in age-matched controls (21). Over 50% of breast cancer tumor samples had intense staining of CCL2 in tumor cells (22). Prognostic analysis further revealed that high expression of CCL2 was correlated with advanced tumor stage, lymph node metastasis (23), and early relapse (24). CCL2 up-regulation in breast tumors was also associated with the infiltration of tissue-associated macrophages (TAMs)3 and with increased microvessel density (22, 24). TAMs have been known to contribute to primary tumor progression and metastasis of breast cancer (25), which is supported by epidemiological evidence showing that TAM infiltration portended a poor clinical outcome (26, 27). However, whether the function of CCL2 in modulating activity of macrophages and possibly other cell types is important for breast tumor organotropic metastasis has not been rigorously investigated. CCL2 may engage organ-specific cell types derived from the same bone marrow myelomonocytic progenitors. These progenitors differentiate into osteoclast precursors in bone or into blood monocytes that eventually become mature macrophages in different tissues, like alveolar macrophages in lung (28). These stromal cell types of myelomonocytic origin may contribute to different functions in different organ-specific metastases. Another unresolved question regarding the function of CCL2 in tumor-stroma interaction is the functional involvement of CCL2 receptors. CCL2 can bind to both CCR2 and CCR4 (29, 30). Loss of function studies in mice showed CCL2 and CCR2 knock-out mice displayed similar impairments in monocyte migration (31, 32), suggesting that CCR2 is the major functional receptor for CCL2. Understanding whether CCR2 deficiency in stromal cells leads to compromised monocyte engagement by CCL2-expressing tumor cells may have important implications in designing targeting therapeutics against the CCL2/CCR2 axis.In this study, we used the recently developed organ-specific metastatic sublines of the human breast cancer cell MDA-MB-231 (9, 10, 33) and showed that overexpression of CCL2 promotes both lung and bone metastases. This function was associated with increased TAM infiltration in lung metastasis and increased osteoclast differentiation in bone metastasis, respectively. Furthermore, by using macrophages and bone marrow cells isolated from wild type, CCL2-deficient, and CCR2-deficient mice, we showed that CCR2 expression in stromal cells is essential for tumor-derived CCL2 to recruit macrophages and promote osteoclastogenesis. Targeting tumor-derived CCL2 by a neutralizing antibody significantly reduced metastasis formation in both bone and lung.  相似文献   

2.
The existence of drug-resistant human immunodeficiency virus (HIV) viruses in patients receiving antiretroviral treatment urgently requires the characterization and development of new antiretroviral drugs designed to inhibit resistant viruses and to complement the existing antiretroviral strategies against AIDS. We assayed several natural or semi-synthetic lupane-type pentacyclic triterpenes in their ability to inhibit HIV-1 infection in permissive cells. We observed that the 30-oxo-calenduladiol triterpene, compound 1, specifically impaired R5-tropic HIV-1 envelope-mediated viral infection and cell fusion in permissive cells, without affecting X4-tropic virus. This lupane derivative competed for the binding of a specific anti-CCR5 monoclonal antibody or the natural CCL5 chemokine to the CCR5 viral coreceptor with high affinity. 30-Oxo-calenduladiol seems not to interact with the CD4 antigen, the main HIV receptor, or the CXCR4 viral coreceptor. Our results suggest that compound 1 is a specific CCR5 antagonist, because it binds to the CCR5 receptor without triggering cell signaling or receptor internalization, and inhibits RANTES (regulated on activation normal T cell expressed and secreted)-mediated CCR5 internalization, intracellular calcium mobilization, and cell chemotaxis. Furthermore, compound 1 appeared not to interact with β-chemokine receptors CCR1, CCR2b, CCR3, or CCR4. Thereby, the 30-oxo-calenduladiol-associated anti-HIV-1 activity against R5-tropic virus appears to rely on the selective occupancy of the CCR5 receptor to inhibit CCR5-mediated HIV-1 infection. Therefore, it is plausible that the chemical structure of 30-oxo-calenduladiol or other related dihydroxylated lupane-type triterpenes could represent a good model to develop more potent anti-HIV-1 molecules to inhibit viral infection by interfering with early fusion and entry steps in the HIV life cycle.The human immunodeficiency virus (HIV)7 pandemic is a medical challenge and represents the public health crisis of our time (15). Antiretroviral treatment achieves long-lasting viral suppression and, subsequently, reduces the morbidity and mortality of HIV-infected individuals. However, current drugs do not eradicate HIV infection and lifelong treatment might be needed (2).Emerging drug-resistant HIV viruses, in patients receiving high active antiretroviral treatment, urgently needs the development of new antiretroviral molecules designed to inhibit resistant viruses, because many patients treated during the past decades harbor viral strains with reduced susceptibilities to many if not all available drugs (2, 6). In this matter, pentacyclic triterpenes represent a varied class of natural products presenting antitumor and antiviral activities (79). A well studied pentacyclic lupane-type triterpene is the betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid), widely distributed throughout the plant kingdom, which presents anti-inflammatory, anti-malarial, and anti-HIV-1 effects in vitro (7, 9, 10). Although its mechanism of action has not been fully determined, it has been reported that some lupane-type triterpene derivatives impair HIV-1 fusion through interacting with the viral glycoprotein gp41, or disrupting the assembly and budding of emerging viral particles in infected target cells (reviewed in Ref. 9).In the present work, we aimed to test the ability of several non-acid lupane-type triterpene, natural or derivative compounds, to inhibit HIV-1 viral infection and to determine the mechanism of action. Our results indicate that the semi-synthetic 30-oxo-calenduladiol, compound 1, specifically interacts with the G protein-coupled CCR5 chemokine receptor, acting as an antagonist, inhibiting R5-tropic HIV-1 viral infection and CCL5 (regulated on activation normal T expressed and secreted (RANTES) chemokine)-mediated CCR5 internalization, cell signaling, and chemotaxis.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

4.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

5.
6.
7.
8.
9.
10.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

11.
12.
13.
14.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

15.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

16.
Aldo-keto reductase family 1 member B10 (AKR1B10) is primarily expressed in the normal human colon and small intestine but overexpressed in liver and lung cancer. Our previous studies have shown that AKR1B10 mediates the ubiquitin-dependent degradation of acetyl-CoA carboxylase-α. In this study, we demonstrate that AKR1B10 is critical to cell survival. In human colon carcinoma cells (HCT-8) and lung carcinoma cells (NCI-H460), small-interfering RNA-induced AKR1B10 silencing resulted in caspase-3-mediated apoptosis. In these cells, the total and subspecies of cellular lipids, particularly of phospholipids, were decreased by more than 50%, concomitant with 2–3-fold increase in reactive oxygen species, mitochondrial cytochrome c efflux, and caspase-3 cleavage. AKR1B10 silencing also increased the levels of α,β-unsaturated carbonyls, leading to the 2–3-fold increase of cellular lipid peroxides. Supplementing the HCT-8 cells with palmitic acid (80 μm), the end product of fatty acid synthesis, partially rescued the apoptosis induced by AKR1B10 silencing, whereas exposing the HCT-8 cells to epalrestat, an AKR1B10 inhibitor, led to more than 2-fold elevation of the intracellular lipid peroxides, resulting in apoptosis. These data suggest that AKR1B10 affects cell survival through modulating lipid synthesis, mitochondrial function, and oxidative status, as well as carbonyl levels, being an important cell survival protein.Aldo-keto reductase family 1 member B10 (AKR1B10,2 also designated aldose reductase-like-1, ARL-1) is primarily expressed in the human colon, small intestine, and adrenal gland, with a low level in the liver (13). However, this protein is overexpressed in hepatocellular carcinoma, cervical cancer, lung squamous cell carcinoma, and lung adenocarcinoma in smokers, being a potential diagnostic and/or prognostic marker (1, 2, 46).The biological function of AKR1B10 in the intestine and adrenal gland, as well as its role in tumor development and progression, remains unclear. AKR1B10 is a monomeric enzyme that efficiently catalyzes the reduction to corresponding alcohols of a range of aromatic and aliphatic aldehydes and ketones, including highly electrophilic α,β-unsaturated carbonyls and antitumor drugs containing carbonyl groups, with NADPH as a co-enzyme (1, 712). The electrophilic carbonyls are constantly produced by lipid peroxidation, particularly in oxidative conditions, and are highly cytotoxic; through interaction with proteins, peptides, and DNA, the carbonyls cause protein dysfunction and DNA damage (breaks and mutations), resulting in mutagenesis, carcinogenesis, or apoptosis (10, 1319). AKR1B10 also shows strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal, reducing them to the corresponding retinols, which may regulate the intracellular retinoic acid, a signaling molecule modulating cell proliferation and differentiation (6, 2023). In lung cancer, AKR1B10 expression is correlated with the patient smoking history and activates procarcinogens in cigarette smoke, such as polycyclic aromatic hydrocarbons, thus involved in lung tumorigenesis (2426).Recent studies have shown that in breast cancer cells, AKR1B10 associates with acetyl-CoA carboxylase-α (ACCA) and blocks its ubiquitination and proteasome degradation (27). ACCA is a rate-limiting enzyme of de novo synthesis of long chain fatty acids, catalyzing the ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA (28). Long chain fatty acids are the building blocks of biomembranes and the precursor of lipid second messengers, playing a critical role in cell growth and proliferation (29, 30). Therefore, ACCA activity is tightly regulated by both metabolite-mediated allosteric mechanisms and phosphorylation-dependent mechanisms; the latter are controlled by multiple hormones, such as insulin, glucagon, and growth factors (3133). ACCA activity is also regulated through physical protein-protein interaction. For instance, breast cancer 1 (BRCA1) protein associates with the ACCA and blocks its Ser79 residue from dephosphorylation (34, 35). The AKR1B10-mediated regulation on ACCA stability represents a novel regulatory mechanism, and this current study elucidated the biological significance of this regulation. The results show that AKR1B10 promotes cell survival via modulating lipid synthesis, mitochondrial function and oxidative stress, and carbonyl levels.  相似文献   

17.
Disturbance of the tight junction (TJ) complexes between brain endothelial cells leads to increased paracellular permeability, allowing leukocyte entry into inflamed brain tissue and also contributing to edema formation. The current study dissects the mechanisms by which a chemokine, CCL2, induces TJ disassembly. It investigates the potential role of selective internalization of TJ transmembrane proteins (occludin and claudin-5) in increased permeability of the brain endothelial barrier in vitro. To map the internalization and intracellular fate of occludin and claudin-5, green fluorescent protein fusion proteins of these TJ proteins were generated and imaged by fluorescent microscopy with simultaneous measurement of transendothelial electrical resistance. During CCL2-induced reductions in transendothelial electrical resistance, claudin-5 and occludin became internalized via caveolae and further processed to early (EEA1+) and recycling (Rab4+) endosomes but not to late endosomes. Western blot analysis of fractions collected from a sucrose gradient showed the presence of claudin-5 and occludin in the same fractions that contained caveolin-1. For the first time, these results suggest an underlying molecular mechanism by which the pro-inflammatory chemokine CCL2 mediates brain endothelial barrier disruption during CNS inflammation.The blood-brain barrier is situated at the cerebral endothelial cells and their linking tight junctions. Increased brain endothelial barrier permeability is associated with remodeling of inter-endothelial tight junction (TJ)2 complex and gap formation between brain endothelial cells (paracellular pathway) and/or intensive pinocytotic vesicular transport between the apical and basal side of brain endothelial cells (transcellular pathway) (1, 2). The transcellular pathway can be either passive or active and is characterized by low conductance and high selectivity. In contrast, the paracellular pathway is exclusively passive, being driven by electrochemical and osmotic gradients, and has a higher conductance and lower selectivity (3).Brain endothelial barrier paracellular permeability is maintained by an equilibrium between contractile forces generated at the endothelial cytoskeleton and adhesive forces produced at endothelial cell-cell junctions and cell-matrix contacts (13). A dynamic interaction among these structural elements controls opening and closing of the paracellular pathway and serves as a fundamental mechanism regulating blood-brain exchange. How this process occurs is under intense investigation. Two possible mechanisms may potentially increase paracellular permeability: phosphorylation of TJ proteins and/or endocytosis of transmembrane TJ proteins.Changes in TJ protein phosphorylation seem to be required to initiate increased brain endothelial permeability and a redistribution of most TJ proteins away from the cell border (48). Endocytosis may also be involved in remodeling TJ complexes between endothelial cells. Several types of endocytosis may be involved in TJ protein uptake, including clathrin- and caveolae-mediated endocytosis and macropinocytosis (for reviews, see Refs. 8 and 912). After first forming cell membrane-derived endocytotic vesicles, these vesicles fuse with early endosomes whose contents are further sorted for transport to lysosomes for degradation or recycling back to the plasma membrane for reuse (11).Although there is a lack of definitive knowledge regarding endocytotic internalization of brain endothelial cell TJ proteins, several studies on epithelial cells have indicated that occludin may be internalized via caveolae-mediated endocytosis whereas ZO-1, claudin-1, and junctional adhesion molecules-A may undergo macropinocytosis in response to stimuli such as TNF-α and INF-γ (13, 14). In contrast, there is evidence that Ca2+ may induce internalization of claudin-1 and occludin via clathrin-coated vesicles (8, 1416). All of these studies pinpoint endocytosis as an underlying process in TJ complex remodeling and redistribution, and thus regulation of paracellular permeability in epithelial cells.The present study examines whether internalization of transmembrane TJ proteins could be one process by which adhesion between brain endothelial cells is changed during increased paracellular permeability. Our results show that a pro-inflammatory mediator, the chemokine CCL2, induces disassembly of the TJ complex by triggering caveolae-dependent internalization of transmembrane TJ proteins (occludin and claudin-5). Once internalized, occludin and claudin-5 are further processed to recycling endosomes awaiting return to the plasma membrane.  相似文献   

18.
19.
20.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号