首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r ≥ 0.94), fatty acid oxidation (r ≥ 0.88), and triacylglycerol esterification (r ≥ 0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.Uptake of long chain fatty acids across the plasma membrane had long been considered to occur via passive diffusion. However, in recent years, there has been a fundamental shift in our understanding, and it is now widely recognized that long chain fatty acids cross the plasma membrane via a protein-mediated mechanism (for reviews, see Refs. 13). A number of fatty acid transporters have been identified, including fatty acid translocase/CD36 (FAT/CD36), plasma membrane-associated fatty acid binding proteins (FABPpm), and a family of fatty acid transport proteins (FATP1–6)5 (for reviews, see Refs. 1 and 4). Selected stimuli (muscle contraction, insulin, and AICAR) induce the translocation of selected fatty acid transporters (FABPpm, FAT/CD36, and FATP1) from an intracellular depot to the plasma membrane, in both heart and skeletal muscle, resulting in concurrently increased rates of fatty acid transport (for a review, see Ref. 1). Some fatty acid transporters have now also been implicated in the dysregulation of fatty acid metabolism in heart and skeletal muscle in models of insulin resistance and type 1 and 2 diabetes, including FAT/CD36 (59), FATP1 (10, 11), and possibly FATP4 (11, 12) but not FABPpm (57). Thus, in recent years, it has become widely accepted that (a) long chain fatty acids traverse the plasma membrane via a protein-mediated mechanism and (b) some of the fatty acid transporters are central to the dysregulation in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes.In vivo, many of the fatty acid transporters are frequently co-expressed in different tissues. FAT/CD36 and FABPpm are ubiquitously expressed (1), whereas FATP1–6 exhibit a somewhat tissue-specific distribution pattern (13, 14). The reason for the co-expression of different fatty acid transporters within the same tissue remains unclear. It has been speculated that selected fatty acid transporters may need to interact with each other (15, 16). Alternatively, it is also possible that (a) different fatty acid transporters have discrepant transport capacities, and (b) selected transporters may channel fatty acids differentially to fatty acid oxidation and esterification into triacylglycerols in mammalian tissue.Recent evidence has shown that the transport capacities among FATPs can differ substantially, as revealed by overexpression (14, 17, 18) or knockdown studies (19), but there is little agreement as to which FATP is most effective. Extensive studies by DiRusso et al. (17) in yeast revealed that when FATP1–6 were overexpressed to similar levels (qualitative assessment), FATP4 exhibited 1.7- and 3-fold greater fatty acid transport effectiveness compared with FATP1 and FATP2, respectively, whereas no fatty acid transport capacities were attributable to FATP3, -5, and -6 (17). In contrast, in HEK293 cells, the FATP6 transport capacity was 3- and 6.5-fold greater than FATP1 and FATP4, respectively (14), whereas in 3T3-L1 adipocytes, a fatty acid transport role was evident only for FATP1 and not FATP4 (19). Others have also questioned the transport role of FATP4 (20). These discrepant findings with respect to the transport effectiveness of FATPs may reflect, in part, the use of diverse cell types with ill defined metabolic needs and/or machinery for fatty acid uptake and metabolism. Indeed, several recent reports indicate that fatty acid transport cannot be adequately examined in some cells, because these appear to lack accessory proteins that may be involved in fatty acid transport (21, 22). In addition, extrapolation of results from cultured cells to metabolically important tissue in vivo may also be problematic, since cells and mammalian tissues probably have different requirements for fatty acid utilization, and their regulation of fatty acid uptake may also differ. For example, the mechanisms regulating the acute contraction-induced up-regulation of fatty acid transport and oxidation, such as occurs in heart and skeletal muscle, is probably absent in selected cell cultures.Assessment of fatty acid transporter effectiveness, in vivo, cannot be determined in knock-out animals, since compensatory responses in some fatty acid transporters (FATP1 and -4) occur when another fatty acid transporter (FAT/CD36) has been ablated (23, 24). Thus, the relative effectiveness of selected fatty acid transporters on fatty acid transport in vivo remains unknown. In addition, whether fatty acid transporters channel fatty acids to a particular metabolic fate, as has been suggested based on studies in cultured cells (18, 19, 25), may depend on the cell type being examined.It is desirable to discern the effectiveness of selected fatty acid transporters in mammalian tissues that have a well known system for transporting and utilizing fatty acids and in which fatty acid transporters can be independently up-regulated without disturbing the expression of other fatty acid transporters. These criteria can be satisfied in rat skeletal muscle in which genes can be up-regulated under controlled conditions within a physiologically meaningful range (2628). Therefore, in the present study, we have compared the independent transport effectiveness of fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) in skeletal muscle, without disturbing the expression and plasmalemmal content of other fatty acid transporters. In addition, we also examined the contributions of these transporters to fatty acid oxidation and esterification into triacylglycerols. These are the first studies to reveal that in vivo (a) the fatty acid transport effectiveness of fatty acid transporters differs considerably, and (b) in skeletal muscle, these transporters serve to channel fatty acids to oxidation, not esterification into triacylglycerols.  相似文献   

3.
4.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

5.
6.
7.
8.
9.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

10.
11.
12.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

13.
14.
15.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

16.
17.
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.The ability of tumor cells to metastasize to secondary sites is a hallmark of neoplastic disease. Unfortunately, this propensity to spread is the primary cause of morbidity and death in cancer patients (1). Metastasis is clearly a highly regulated, multistep process that occurs in a spatiotemporal manner (24). To escape the restrictive compartment boundaries characteristic of adult tissue, separate intravasation and extravasation steps requiring alterations in co-adhesion, adhesion, invasion, and migration must occur. Execution of these biological processes, involving multiple proteins and cellular organelles, require highly coordinated cell signaling mechanisms.The Rho family of small GTPases regulates many facets of cytoskeletal rearrangements that facilitate cell attachment and migration (57). Rho GTPases act as molecular switches by changing from an inactive GDP-bound conformation to an active GTP-bound conformation, thereby regulating a signaling pathway. These proteins are directly regulated by Rho guanine nucleotide exchange factors (GEFs),2 Rho GTPase activating proteins, and Rho GDP-dissociation inhibitors (812). RhoGEFs bind to the GTPase to catalyze the dissociation of GDP, allowing the binding of GTP and thereby promoting Rho activation (8). The RGS (regulators of G protein signaling) domain-containing RhoGEFs are a recently described family of GEFs. Currently, there are three members of this family, PDZ-RhoGEF, LARG, and p115RhoGEF (1315), in which the RGS domains function as a heterotrimeric GTPase-activating domain (13, 15, 16). The RGS family of RhoGEFs has been shown to regulate Rho during several processes including cytoskeletal rearrangements, cell adhesion, and cancer progression (1721).There is significant interplay between the activity of small GTPases and signaling derived from fatty acid metabolism (2228). Linoleic acid, which is metabolized to arachidonic acid, is an n-6 polyunsaturated fatty acid that is present at high levels in most western diets (29). In animal models, diets high in n-6 polyunsaturated fatty acids have been shown to enhance tumor progression and metastasis (30, 31). Additionally, arachidonic acid is stored in cell membranes and is made available by phospholipases under conditions of increased inflammatory response (32). Arachidonic acid is further metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases to yield bioactive products that have myriad effects on cells, and altered metabolism of arachidonic acid by COX, LOX, and P450 has been implicated in cancer progression (31, 3336).We have studied mechanisms of cell adhesion using the MDA-MB-435 cells as a model of a highly metastatic human cancer cell line (37). These cells have been extensively studied for their ability to recapitulate the metastatic cascade in vivo and in vitro, although recent work indicates that the cells currently in use are most likely a human melanoma line (38). We initially observed that arachidonic acid (AA) enhanced adhesion of MDA-MB-435 cells to type IV collagen through specific integrin-mediated pathways (37). Exogenous AA led to the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 and the phosphorylation of heat shock protein 27 (HSP27) via a p38 MAPK-dependent process (39). Inhibition of p38 MAPK activation blocked cell adhesion as did function-blocking antibodies specific for subunits of the collagen receptor (40). More recently, we identified the key metabolite of AA (15-(S)- hydroxyeicosatetraenoic acid) and the upstream kinases (TAK1 and MKK6) that are responsible for activation of p38 MAPK in this system (41).In this study we investigated the role of Rho activation in the MDA-MB-435 cells after exposure to arachidonic acid. Several aspects of the regulation of Rho signaling in these cells provide insights into the cross-talk between important signaling pathways.  相似文献   

18.
19.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号