首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Comparison of the sequences of Bacillus thuringiensis entomocidal toxins of widely differing specificity reveals six conserved domains. The role of one of the most highly conserved domains (D1) located near the N-terminus has been investigated by site directed mutagenesis at two positions. Although preliminary results indicate that the capacity of the mutants to bind to putative receptors on the plasma membrane of susceptible cells was unaffected, toxicity in vivo was reduced by 70-80%. The role of the highly hydrophobic segment exposed at the N-terminus of the toxin after proteolytic activation was investigated by substituting two aspartate residues for phenylalanine and valine located adjacent to each other in the centre of this segment. The toxicity of the resulting mutant protein was only 40% of the unmutated toxin but again preliminary results suggest that binding to putative receptors was unaffected. These results suggest that regions close to the N-terminus of this and similar toxins may play an important role in the membrane insertion event which is believed to follow receptor recognition.  相似文献   

2.
Contagious agalactia caused by Mycoplasma agalactiae is an economically important disease of sheep and goats and has been prevalent worldwide including India. The present study was undertaken to evaluate the membrane protein P48 of M. agalactiae for specific diagnosis of disease. For this, p48 gene of the organism was amplified by PCR and subjected to site directed mutagenesis to convert three TGA codons to TGG’s and, subsequently, cloned into prokaryotic expression vector pPRO EX HTb. Purified recombinant P48 protein reacted to anti-P48 serum in western blotting, which confirmed its immunogenic nature. Furthermore, the immune-blotting of the cell lysates from various Indian isolates of M. agalactiae against anti-P48 serum resulted in a single band at ~ 48 kDa among all isolates, indicating the conserved nature of P48 antigen in M. agalactiae. Also, the cross reactivity of P48 antigen among various Mycoplasma spp. was checked by western blotting which revealed reactivity only with M. agalactiae and M. bovis. Hence, this antigen could be exploited to differentiate M. agalactiae from other pathogenic Mycoplasma species except M. bovis. However, the inability of P48 to distinguish M. agalactiae from M. bovis does not downgrade the significance of P48 as the two species are usually host specific.  相似文献   

3.
This protocol describes procedures to maintain nematodes in the laboratory and how to mutagenize them using two alternative methods: ethyl methane sulfonate (EMS) and 4, 5'', 8-trimethylpsoralen combined with ultraviolet light (TMP/UV). Nematodes are powerful biological systems for genetics studies because of their simple body plan and mating system, which is composed of self-fertilizing hermaphrodites and males that can generate hundreds of progeny per animal. Nematodes are maintained in agar plates containing a lawn of bacteria and can be easily transferred from one plate to another using a pick. EMS is an alkylating agent commonly used to induce point mutations and small deletions, while TMP/UV mainly induces deletions. Depending on the species of nematode being used, concentrations of EMS and TMP will have to be optimized. To isolate recessive mutations of the nematode Pristionchus pacificus, animals of the F2 generation were visually screened for phenotypes. To illustrate these methods, we mutagenized worms and looked for Uncoordinated (Unc), Dumpy (Dpy) and Transformer (Tra) mutants.  相似文献   

4.
The present study was undertaken to explore the genetic basis of caprine prolificacy and to screen indigenous goats for prolificacy associated markers of sheep in BMPR1B, GDF9 and BMP15 genes. To detect the associated mutations and identify novel allelic variants in the candidate genes, representative samples were collected from the breeding tract of indigenous goat breeds varying in prolificacy and geographic distribution. DNA was extracted and PCR amplification was done using primers designed or available in literature for the coding DNA sequence of candidate genes. Direct sequencing was done to identify the genetic variations. Mutations in the candidate genes associated with fecundity in sheep were not detected in Indian goats. Three non-synonymous SNPs (C818T, A959C and G1189A) were identified in exon 2 of GDF9 gene out of which mutation A959C has been associated with prolificacy in exotic goats. Two novel SNPs (G735A and C808G) were observed in exon 2 of BMP15 gene.  相似文献   

5.
EJ Gleason  EM Kramer 《Gene》2012,507(1):54-60
Epigenetic regulation is important for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. The plant Polycomb Repressive Complex 2 (PRC2) contains four core proteins, Enhancer of Zeste (E(z)), Suppressor of Zeste 12 (Su(z)12), Extra Sex Combs (ESC), and Multicopy Suppressor of IRA 1 (MSI1), and functions in many developmental transitions. In some plant species, including rice and Arabidopsis, duplications in the core PRC2 proteins allow the formation of PRC2s with distinct developmental functions. In addition, members of the plant specific VEL PHD family have been shown to associate with the PRC2 complex in Arabidopsis and may play a role in targeting the PRC2 to specific loci. Here we examine the evolution and expression of the PRC2 and VEL PHD families in Aquilegia, a member of the lower eudicot order Ranunculales and an emerging model for the investigation of plant ecology, evolution and developmental genetics. We find that Aquilegia has a relatively simple PRC2 with only one homolog of Su(z)12, ESC and MSI1 and two ancient copies of E(z), AqSWN and AqCLF. Aquilegia has four members of the VEL PHD family, three of which appear to be closely related to Arabidopsis proteins known to associate with the PRC2. The PRC2 and VEL PHD family proteins are expressed at a relatively constant level throughout Aquilegia vulgaris development, with the VEL PHD family and MSI1 expressed at higher levels during and after vernalization and in the inflorescence. Both AqSWN and AqCLF are expressed in Aquilegia endosperm but neither copy is imprinted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号