共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou Zhang Thomas Albers Heather L. Fiumera Armanda Gameiro Christof Grewer 《The Journal of biological chemistry》2009,284(37):25314-25323
The SLC38 family of solute transporters mediates the coupled transport of amino acids and Na+ into or out of cells. The structural basis for this coupled transport process is not known. Here, a profile-based sequence analysis approach was used, predicting a distant relationship with the SLC5/6 transporter families. Homology models using the LeuTAa and Mhp1 transporters of known structure as templates were established, predicting the location of a conserved Na+ binding site in the center of membrane helices 1 and 8. This homology model was tested experimentally in the SLC38 member SNAT2 by analyzing the effect of a mutation to Thr-384, which is predicted to be part of this Na+ binding site. The results show that the T384A mutation not only inhibits the anion leak current, which requires Na+ binding to SNAT2, but also dramatically lowers the Na+ affinity of the transporter. This result is consistent with a previous analysis of the N82A mutant transporter, which has a similar effect on anion leak current and Na+ binding and which is also expected to form part of the Na+ binding site. In contrast, random mutations to other sites in the transporter had little or no effect on Na+ affinity. Our results are consistent with a cation binding site formed by transmembrane helices 1 and 8 that is conserved among the SLC38 transporters as well as among many other bacterial and plant transporter families of unknown structure, which are homologous to SLC38.The sodium-coupled neutral amino acid transporter, SNAT2,2 belongs to the SLC38 gene family of solute carrier proteins (1). Together with SNAT1 and -4 (2), it is believed to mediate Na+-dependent amino acid transport activity that was classically assigned to System A transporters (3–8). In addition to SNAT1 and -2, the SLC38 family has four other known members, two of which predominantly mediate glutamine transport (SNAT3 and -5, System N (9–11)). SNAT2 is widely expressed in mammalian tissue (1, 7), but it may play a particularly critical role in the brain (12), where it may help shuttle glutamine from astrocytes to neurons via the glutamate-glutamine cycle (1). This process is essential for recycling the neurotransmitter glutamate (13). However, the exact contribution of SNAT2 to the glutamate-glutamine cycle is still controversially discussed (14).Despite this physiological importance, surprisingly little is known about the functional properties and the structural basis of amino acid transport by the SLC38 proteins. Although hydropathy analysis predicts 11 transmembrane helices (TMs), with an intracellular N terminus and an extracellular C terminus (1), it is not clear whether the transporters belong to a large superfamily of transporters, of which members have been characterized structurally through x-ray crystallography. At present, sequence homology has only been established with transporters of the mammalian SLC32 and SLC36 families as well as with the more distantly related plant auxin carriers and the bacterial amino acid-polyamine-organocation (APC) family (15, 16). High resolution crystal structures are not available for any of the transporters from these families, although low resolution projection structures were recently reported for the APC family members AdiC (17) and SteT (18). However, these structures do not allow the assignment of transmembrane helices. Thus, it remains unknown whether the SLC38 fold is similar to established transport protein folds, although homology to the major facilitator superfamily seems unlikely.We have recently identified a conserved amino acid residue in SNAT2, Asn-82, which is involved in controlling the Na+ affinity of the transporter (19). Interestingly, Asn-82 is localized in the predicted TM1 of SNAT2. This first transmembrane helix was recently found to contribute ligands to a Na+ binding site in several bacterial transporters, which are related to the SLC5 (sodium glucose symporter) and SLC6 (sodium- and chloride-dependent neurotransmitter transporter) family members (20–22), which also comprises bacterial members (23, 24). Although sequence similarity with SLC5 and -6 is not detectable, SLC38 may be a member of a possibly very large superfamily with the same general fold, which also contains many amino acid transport proteins.Here, we used a homology modeling approach based on profile-based sequence alignment (25, 26). A search against sequences deposited in the Protein Data Bank (PDB (27)) revealed that the transporters with the highest likelihood to share an analogous fold are a leucine transporter from Aquifex aeolicus, LeuTAa, and a homologous hydantoin transporter from Microbacterium liquefaciens, Mhp1. We established a homology model based on these structures, which predicts Asn-82 to be part of a Na+ binding site. Furthermore, another conserved hydrophilic amino acid residue in TM8, Thr-384, was predicted to be near this cation binding site. When Thr-384 was mutated to alanine, a dramatic loss of the affinity of SNAT2 for Na+ was observed, whereas mutations to other sites that were spatially removed from the predicted Na+ binding site had little or no effect on Na+ affinity. We hypothesize that the SLC38 family is a member of a large superfamily of cation/organic substrate transporters which includes the mammalian SLC5 and -6 proteins and which has a conserved cation binding site formed by TMs 1 and 8. 相似文献
2.
Nandhitha Subramanian Amanda J. Scopelitti Jane E. Carland Renae M. Ryan Megan L. O’Mara Robert J. Vandenberg 《PloS one》2016,11(6)
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1'' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1'' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1'' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10. 相似文献
3.
The P[lArB]-element insertional mutation (Indy
p115) was obtained in the promoter region of the Na+-dicarboxylate transporter gene of Drosophila (geneIndy, I'm not dead yet) within the 75D region of chromosome 3. The expression pattern of the reporter -galactosidase was determined in various tissues of third-instar larvae and adult flies. Both males and females homozygous for this mutation were fertile, though their viability was reduced. The two lethality phases were revealed in embryogenesis at nucleus cleavage stages 1–5 to the point of blastoderm formation and at latest stages 15–16, as well as at stage 17, when the larval development is completed though the larva still remains in the chorion. The gene expression in the follicular cells of an embryo at the terminal oogenesis stages is suggested to cause the first lethality stage. The expression pattern of this gene seems also to account for the tissue- and stage-specific activity of the 5"-regulatory region in the Indy gene. 相似文献
4.
Inga H?nelt Sonja Jensen Dorith Wunnicke Dirk Jan Slotboom 《The Journal of biological chemistry》2015,290(26):15962-15972
GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na+ and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na+ binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m−1s−1). At least two sodium ions bind before aspartate. The binding of Na+ requires a very high activation energy (Ea 106.8 kJ mol−1) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na+ concentration present. Binding of aspartate was not observed in the absence of Na+, whereas in the presence of high Na+ concentrations (above the Kd for Na+) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 105
m−1s−1), with low Ea and Q10 values (42.6 kJ mol−1 and 1.8, respectively). We conclude that Na+ binding is most likely the rate-limiting step for substrate binding. 相似文献
5.
Clearance of synaptically released dopamine is regulated by the plasmalemmal dopamine transporter (DAT), an integral membrane protein that resides within a complex lipid milieu. Here we demonstrate that cholesterol, a major component of the lipid bilayer, can modulate the conformation of DAT and alter cocaine binding to DAT. In striatal synaptosomes and transfected cells, DAT was in cholesterol-rich membrane fractions after mild detergent extraction. After increasing the membrane cholesterol content by treatment of water-soluble cholesterol (cholesterol mixed with methyl-β-cyclodextrin), we observed an increase in DAT binding Bmax values for cocaine analogs [3H]WIN35428 and [125I]RTI-55, but similar levels of DAT proteins on the cell surface were shown by surface biotinylation assays. Membrane cholesterol addition also markedly enhanced the accessibility of cysteine sulfhydryl moieties in DAT as probed by a membrane-impermeable maleimide-biotin conjugate. We identified cysteine 306, a juxtamembrane residue on transmembrane domain 6 (TM6) of DAT, as the intrinsic residue exhibiting enhanced reactivity. Similar effects on DAT cysteine accessibility and radioligand binding were observed with addition of zinc, a reagent known to promote the outward facing conformation of DAT. Using substituted cysteine mutants on various positions likely to be extracellular, we identified additional residues located on TM1, TM6, TM7, and TM12 of DAT that are sensitive to alterations in the membrane cholesterol content. Our findings in transfected cells and native tissues support the hypothesis that DAT adopts an outward facing conformation in a cholesterol-rich membrane environment, suggesting a novel modulatory role of the surrounding membrane lipid milieu on DAT function. 相似文献
6.
Marianne Kluth Jan Stindt Carola Dr?ge Doris Linnemann Ralf Kubitz Lutz Schmitt 《The Journal of biological chemistry》2015,290(8):4896-4907
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. 相似文献
7.
Zhijian Huang 《Biophysical journal》2010,99(5):1416-1425
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure—showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events. 相似文献
8.
Weiss MD Donnelly WH Rossignol C Varoqui H Erickson JD Anderson KJ 《Journal of molecular histology》2005,36(4):301-309
Summary System A is a highly regulated, Na+-dependent transporter that accepts neutral amino acids containing short, polar side chains. System A plays an important role
during rat development as decreased pup weights are observed in dams infused during gestation with a non-metabolizable System
A substrate. Given the potential importance of SNAT1 during development in the rat brain, we examined whether SNAT1 would
be present at an earlier gestation during organogenesis in multiple organs by immunohistochemistry and immunoblotting. SNAT1
protein was observed in the developing lungs, intestines, kidneys, heart, pancreas, and skeletal muscle of rats at prenatal
days 14, 17, 19, 21, and postnatal day 2 rats. SNAT1 protein expression decreased in the liver and intestine shortly after
birth and as the rat matured. SNAT1 expression was constant throughout development in the lungs and kidney and increased in
the heart from prenatal day 19 to postnatal day 2. Highest levels of expression in older animals were seen in organs undergoing
rapid cell division. 相似文献
9.
10.
Guangran Li Jianjun Li Bie Tan Jing Wang Xiangfeng Kong Guiping Guan Fengna Li Yulong Yin 《PloS one》2015,10(6)
The sodium-dependent neutral amino acid transporter 2 (SNAT2), which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999) from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI) of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P < 0.05). Studies with enterocytes in vitro showed that amino acid starvation and supplementation with glutamate, arginine or leucine enhanced, while supplementation with glutamine reduced, SNAT2 mRNA expression (P < 0.05). These results regarding the characteristics and regulation of SNAT2 should help to provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine. 相似文献
11.
Sepan T. Amadi Hanane A. Koteiche Sanjay Mishra Hassane S. Mchaourab 《The Journal of biological chemistry》2010,285(34):26710-26718
EmrE, a member of the small multidrug transporters superfamily, extrudes positively charged hydrophobic compounds out of Escherichia coli cytoplasm in exchange for inward movement of protons down their electrochemical gradient. Although its transport mechanism has been thoroughly characterized, the structural basis of energy coupling and the conformational cycle mediating transport have yet to be elucidated. In this study, EmrE structure in liposomes and the substrate-induced conformational changes were investigated by systematic spin labeling and EPR analysis. Spin label mobilities and accessibilities describe a highly dynamic ligand-free (apo) conformation. Dipolar coupling between spin labels across the dimer reveals at least two spin label populations arising from different packing interfaces of the EmrE dimer. One population is consistent with antiparallel arrangement of the monomers, although the EPR parameters suggest deviations from the crystal structure of substrate-bound EmrE. Resolving these discrepancies requires an unusual disposition of TM3 relative to the membrane-water interface and a kink in its backbone that enables bending of its C-terminal part. Binding of the substrate tetraphenylphosphonium changes the environment of spin labels and their proximity in three transmembrane helices. The underlying conformational transition involves repacking of TM1, tilting of TM2, and changes in the backbone configurations of TM3 and the adjacent loop connecting it to TM4. A dynamic apo conformation is necessary for the polyspecificity of EmrE allowing the binding of structurally diverse substrates. The flexibility of TM3 may play a critical role in movement of substrates across the membrane. 相似文献
12.
Determination of Free Ammonium and Asparagine and Glutamine Amide-Nitrogen in Extracts of Plant Tissue 总被引:1,自引:0,他引:1
A relatively simple and rapid procedure for the measurement of free ammonium and the amides in plant extracts is described. The method was developed by combining a cation-exchange method for blood ammonia with a differential acid-hydrolysis procedure for asparagine and glutamine amide-nitrogen.The recovery of standard samples (100-400 mug of ammonium- or amide-nitrogen) of free ammonium, asparagine, and glutamine after being run through the extraction, column, and analytical procedures ranged between 99 and 102%.The harvest, extraction, and analytical procedures were tested on shoots from 4 to 6-day-old germinating barley seeds. The high levels of the amides and the low level of free ammonium present in the tissue extracts indicated that the extraction and analytical procedures resulted in little if any hydrolysis of the amides. 相似文献
13.
The regulation of the Na+-dependent glutamate/aspartate transporter system GLAST expressed in rat and mouse cerebellar and cortical astrocytic cultures was examined. Pretreatment of the cerebellar cells with l-glutamate and 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a known Ca2+/ diacylglicerol-dependent protein kinase (PKC) activator, produced a decrease in [3H]-d-aspartate uptake. This reduction was dose- and time-dependent and sensitive to PKC inhibitors. Furthermore, the l-glutamate–dependent [3H]-d-aspartate uptake decrease is a non-receptor dependent process, because neither of the agonists or antagonists were effective in mimicking or reverting the effect. Interestingly, transportable substrates could reproduce the l-glutamate effect. In sharp contrast, in cortical astrocytes, both l-glutamate and TPA pre-exposure result in an augmentation of the [3H]-d-aspartate uptake. These findings suggest that the Na+-dependent glutamate uptake GLAST undergoes a region-specific regulation. 相似文献
14.
Ossama B. Kashlan Brandon M. Blobner Zachary Zuzek Michael Tolino Thomas R. Kleyman 《The Journal of biological chemistry》2015,290(1):568-576
The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. 相似文献
15.
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid β-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane–localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis. 相似文献
16.
Vladislav Bugaj Steven C. Sansom Donghai Wen Lori I. Hatcher James D. Stockand Elena Mironova 《The Journal of biological chemistry》2012,287(46):38552-38558
The epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) is under tonic inhibition by a local purinergic signaling system responding to changes in dietary sodium intake. Normal BKCa channel function is required for flow-sensitive ATP secretion in the ASDN. We tested here whether ATP secreted through connexin channels in a coupled manner with K+ efflux through BKCa channels is required for inhibitory purinergic regulation of ENaC in response to increases in sodium intake. Inhibition of connexin channels relieves purinergic inhibition of ENaC. Deletion of the BK-β4 regulatory subunit, which is required for normal BKCa channel function and flow-sensitive ATP secretion in the ASDN, suppresses increases in urinary ATP in response to increases in sodium intake. As a consequence, ENaC activity, particularly in the presence of high sodium intake, is inappropriately elevated in BK-β4 null mice. ENaC in BK-β4 null mice, however, responds normally to exogenous ATP, indicating that increases in activity do not result from end-organ resistance but rather from lowered urinary ATP. Consistent with this, disruption of purinergic regulation increases ENaC activity in wild type but not BK-β4 null mice. Consequently, sodium excretion is impaired in BK-β4 null mice. These results demonstrate that the ATP secreted in the ASDN in a BKCa channel-dependent manner is physiologically available for purinergic inhibition of ENaC in response to changes in sodium homeostasis. Impaired sodium excretion resulting form loss of normal purinergic regulation of ENaC in BK-β4 null mice likely contributes to their elevated blood pressure. 相似文献
17.
Abstract Tritium labeled asparagine binds to oxyhemoglobin S and to a mixture of hemoglobins C and S in the molar ratio of 3.38:1 and 8.2:1 respectively. From the dialysis equilibrium studies it appears that labeled asparagine does not bind to oxy- or deoxy- hemoglobin A nor to deoxyhemoglobin S. The constant for equilibrium association of asparagine for oxyhemoglobin S is 7.38 × 107 M?1 and for'oxyhemoglobin CS 4.8 × 104 M?1 at 23°C. Tritium labeled asparagine is bound to oxyhemoglobin S and CS sufficiently strongly to prevent dissociation under the conditions of gel electrophoresis at pH 9.50. The protein with and without bound asparagine, gluta-mine or homoserine, is indistinguishable in molecular net charge and size by the criteria of quantitative polyacrylamide gel electrophoresis (PAGE). Also there were no significant differences in mobility between hemoglobin S and hemoglobin C in the presence and absence of asparagine, glutamine and homoserine as detectable in agar coated cellulose acetate electrophoresis at pH 6.3. Erythrocytes containing hemoglobin S and CS, after incubation with tritium labeled asparagine and lysis under the conditions of gel electrophoresis at pH 9.5, release hemoglobin S and C with bound tritiated asparagine. No tritiated asparagine remains bound to the ghost. 相似文献
18.
Anna Dikalova Angela Fagiana Judy L. Aschner Michael Aschner Marshall Summar Candice D. Fike 《PloS one》2014,9(1)
Rationale
There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored.Objective
We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs.Methods and Results
A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs.Conclusions
SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease. 相似文献19.
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703)) by p90 ribosomal S6 kinase (RSK). Because the NHE1 sequence at Ser(P)(703) (RIGSDP) is similar to a consensus sequence (RSXSXP) specific for 14-3-3 ligands, we evaluated whether serum stimulated 14-3-3 binding to NHE1. Five different GST-NHE1 fusion proteins spanning amino acids 515-815 were phosphorylated by RSK and used as ligands in a far Western analysis; only those containing Ser(P)(703) exhibited high affinity 14-3-3 binding. In PS127A cells (NHE1-overexpressing Chinese hamster fibroblasts) stimulated with 20% serum, NHE1 co-precipitation with GST-14-3-3 fusion protein increased at 5 min (5.2 +/- 0.4-fold versus control; p < 0.01) and persisted at 40 min (3.9 +/- 0.3-fold; p < 0.01). We confirmed that binding occurs at the RIGSDP motif using PS120 (NHE1 null) cells transfected with S703A-NHE1 or P705A-NHE1 (based on data indicating that 14-3-3 binding requires phosphoserine and +2 proline). Serum failed to stimulate association of 14-3-3 with these mutants. A GST-NHE1 fusion protein was phosphorylated by RSK and used as a ligand to assess the effect of 14-3-3 on protein phosphatase 1-mediated dephosphorylation of Ser(P)(703). GST-14-3-3 limited dephosphorylation (66% of initial state at 60 min) compared with GST alone (27% of initial state; p < 0.01). The protective effect of GST-14-3-3 was lost in the GST-NHE1 P705A mutant. Finally, the base-line rate of pH recovery in acid-loaded cells was equal in unstimulated cells expressing wild-type or P705A-NHE1. However, activation of NHE1 by serum was dramatically inhibited in cells expressing P705A-NHE1 compared with wild-type (0.13 +/- 0.02 versus 0.48 +/- 0.06 mmol of H(+)/min/liter, p < 0.01). These data suggest that 14-3-3 binding to NHE1 participates in serum-stimulated exchanger activation, a new function for 14-3-3. 相似文献
20.
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes. 相似文献